【題目】已知點(diǎn)為拋物線內(nèi)一定點(diǎn),過作兩條直線交拋物線于,且分別是線段的中點(diǎn).
(1)當(dāng)時(shí),求△的面積的最小值;
(2)若且,證明:直線過定點(diǎn),并求定點(diǎn)坐標(biāo)。
【答案】(1);(2)詳見解析
【解析】
設(shè)出所在的直線方程,代入拋物線方程,寫出韋達(dá)定理,得出點(diǎn)坐標(biāo),設(shè)出直線的方程,代入拋物線方程,同理得出點(diǎn)坐標(biāo). (1)利用面積公式求得面積的表達(dá)式,并利用基本不等式求得面積的最小值.(2)先求得直線的斜率,根據(jù)點(diǎn)斜式求得直線所在直線方程,利用的表達(dá)式進(jìn)行化簡(jiǎn),由此求得定點(diǎn).
所在直線的方程為,代入中,得,設(shè),則有,從而.則.設(shè)所在直線的方程為,同理可得.
(1),. 又,故,于是△的面積 ,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.所以,△的面積的最小值為.
(2),所在直線的方程為,
即.又,即,代入上式,得,即 .∵,∴是此方程的一組解,所以直線恒過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), R.
(1)證明:當(dāng)時(shí),函數(shù)是減函數(shù);
(2)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由;
(3)當(dāng),且時(shí),證明:對(duì)任意,存在唯一的R,使得,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月1日,我國(guó)全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應(yīng)”“猶豫”和“不響應(yīng)”態(tài)度的人數(shù)如下表所示:
響應(yīng) | 猶豫 | 不響應(yīng) | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為猶豫與否與性別有關(guān)?請(qǐng)說明理由.
猶豫 | 不猶豫 | 總計(jì) | |
男性青年 | |||
女性青年 | |||
總計(jì) | 1800 |
參考公式:
參考數(shù)據(jù):
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右頂點(diǎn)分別為,直線與雙曲線交于,直線交直線于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)若點(diǎn)的軌跡與矩形的四條邊都相切,探究矩形對(duì)角線長(zhǎng)是否為定值,若是,求出此值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過定點(diǎn).
(1)點(diǎn)在圓上運(yùn)動(dòng),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).
(2)若與圓C相交于兩點(diǎn),線段的中點(diǎn)為,又與的交點(diǎn)為,判斷是否為定值.若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若同時(shí)滿足下列三個(gè)條件:① ;② 當(dāng),且時(shí),都有 ;③ 當(dāng),且時(shí),都有, 則稱為“偏對(duì)稱函數(shù)”.現(xiàn)給出下列三個(gè)函數(shù): ; ; 則其中是“偏對(duì)稱函數(shù)”的函數(shù)個(gè)數(shù)為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為().
(1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的兩個(gè)焦點(diǎn)分別為,點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.
(1)求橢圓C的方程;
(2)過點(diǎn)M(1,0)的直線與橢圓C相交于A、B兩點(diǎn),設(shè)點(diǎn)N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com