直線3x-2y-6=0在x軸上的截距為a,在y軸上的截距為b,則( 。
A、a=2,b=3
B、a=-2,b=-3
C、a=-2,b=3
D、a=2,b=-3
考點:直線的一般式方程
專題:直線與圓
分析:分別令x=0和y=0代入直線方程求出對應的截距即可.
解答: 解:由題意得,直線方程為:3x-2y-6=0,
令x=0代入得,y=-3,
令y=0代入得,x=2,
所a=2,b=-3,
故選:D.
點評:本題考查由直線方程的一般式求截距問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2014x+
π
6
)+cos(2014x-
π
3
)的最大值為A,若存在實數(shù)x1,x2,使得對任意實數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1-x2|的最小值為( 。
A、
π
1007
B、
π
2014
C、
1007
D、
2
π
1007

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若log23•log34•log4m=log3
27
,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,則△ABC的形狀是( 。
A、直角三角形
B、等腰非等邊三角形
C、等邊三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,則|
b
|等于( 。
A、
10
2
7
B、
5
2
或2
2
C、
5
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(
3
2
sinx,
1
2
cosx),
b
=(cosx,cosx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,若f(A)=
1
2
,a=
3
,S△ABC=
3
2
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=5
2
,則|
b
|=( 。
A、5
B、25
C、
5
D、
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式:①a2+2>2a;②a2+b2≥2(a-b-1);③a2+b2≥ab恒成立的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)=
a•3x-1-a
3x-1
為奇函數(shù).
(1)求a的值;
(2)求函數(shù)的定義域;
(3)求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案