【題目】已知函數(shù), .
(1)當(dāng)在處的切線與直線垂直時(shí),方程有兩相異實(shí)數(shù)根,求的取值范圍;
(2)若冪函數(shù)的圖象關(guān)于軸對稱,求使不等式在上恒成立的的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)方程有兩相異實(shí)數(shù)根等價(jià)于有兩個(gè)零點(diǎn);(2)令,不等式在上恒成立,即求的最小值,
,對a分類討論研究函數(shù)的單調(diào)性,從而確定出函數(shù)的最值.
試題解析:
(Ⅰ)由題設(shè)可得,令,
則令得 ,
0 | |||
遞減 | 極小值 | 遞增 |
,
且 有兩個(gè)不等實(shí)根 即 .
(Ⅱ)由題設(shè)有,令,
則,令 ,則
又, , 在在單調(diào)遞增,
又,
當(dāng),即時(shí), ,
所以在內(nèi)單調(diào)遞增, ,所以.
②當(dāng),即時(shí),由在內(nèi)單調(diào)遞增,
且,
使得,
0 | |||
遞減 | 極小值 | 遞增 |
所以的最小值為,
又,所以 ,
因此,要使當(dāng)時(shí), 恒成立,只需,即即可.
解得,此時(shí)由,可得.
以下求出a的取值范圍.
設(shè), , 得,
所以在上單調(diào)遞減,從而,
綜上①②所述, 的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)當(dāng),不等式恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(1)證明:AD⊥PB;
求三棱錐C﹣PAB的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 為自然對數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一條對稱軸為,且最高點(diǎn)的縱坐標(biāo)是.
(1)求的最小值及此時(shí)函數(shù)的最小正周期、初相;
(2)在(1)的情況下,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)在圓周上, 在邊上,且,設(shè).
(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;
(2)當(dāng)為何值時(shí),能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南京市江北新區(qū)計(jì)劃在一個(gè)豎直長度為20米的瀑布正前方修建一座觀光電梯。如圖所示,瀑布底部距離水平地面的高度為60米,電梯上設(shè)有一個(gè)安全拍照口, 上升的最大高度為60米。設(shè)距離水平地面的高度為米, 處拍照瀑布的視角為。攝影愛好者發(fā)現(xiàn),要使照片清晰,視角不能小于。
(1)當(dāng)米時(shí),視角恰好為,求電梯和山腳的水平距離。
(2)要使電梯拍照口的高度在52米及以上時(shí),拍出的照片均清晰,請求出電梯和山腳的水平距離的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個(gè)溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動(dòng),共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為實(shí)常數(shù)).
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的取值范圍.
(Ⅱ)討論函數(shù)在上的單調(diào)性.
(Ⅲ)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com