13.不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$的解集是{x|x≤$\frac{2}{3}$或1<x≤3}.

分析 不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$等價為(2-3x)(x-3)(x-1)≥0且x-1≠0,即可得出結(jié)論.

解答 解:不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$等價為(2-3x)(x-3)(x-1)≥0且x-1≠0,
∴x≤$\frac{2}{3}$或1<x≤3,
∴不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$的解集是{x|x≤$\frac{2}{3}$或1<x≤3},
故答案為{x|x≤$\frac{2}{3}$或1<x≤3}.

點評 本題考查不等式的解法,考查學(xué)生轉(zhuǎn)化問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定點A(-1,1),動點P在拋物線C:y2=-8x上,F(xiàn)為拋物線C的焦點.
(1)求|PA|+|PF|最小值;
(2)求以A為中點的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列幾個命題:
①函數(shù)y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函數(shù),但不是奇函數(shù);
②方程x2+(a-3)x+a=0的有一個正實根,一個負(fù)實根,則a<0;
③f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x2+x-1,則x≥0時,f(x)=-2x2+x+1
④函數(shù)y=$\frac{3-{2}^{x}}{{2}^{x}+2}$的值域是(-1,$\frac{3}{2}$).
其中正確命題的序號有②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項和為Sn
(Ⅰ)求an;
(Ⅱ)設(shè)bn=$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z滿足(3-2i)•z=4+3i,則復(fù)平面內(nèi)表示復(fù)數(shù)z的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知關(guān)于x的不等式$\frac{x+1}{x+a}≤2$的解集為p,若1∉p,則實數(shù)a的取值范圍為(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知 a-a-1=2,則$\frac{{({a^3}+{a^{-3}})({a^2}+{a^{-2}}-2)}}{{{a^4}-{a^{-4}}}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)求函數(shù)y=2x+4$\sqrt{2-x}$,x∈[0,2]的值域;
(2)化簡:$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-co{s}^{2}40°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知全集U=R,函數(shù)y=$\sqrt{x-2}$+$\sqrt{x+1}$的定義域為集合A,函數(shù)y=-x2+2x+2的值域為集合B.
(1)求集合A∩B,A∪B.
(2)求集合(∁UA)∩(∁UB).

查看答案和解析>>

同步練習(xí)冊答案