分析 不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$等價為(2-3x)(x-3)(x-1)≥0且x-1≠0,即可得出結(jié)論.
解答 解:不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$等價為(2-3x)(x-3)(x-1)≥0且x-1≠0,
∴x≤$\frac{2}{3}$或1<x≤3,
∴不等式$\frac{{({2-3x})({x-3})}}{{({{x^2}-x+2})({x-1})}}≥0$的解集是{x|x≤$\frac{2}{3}$或1<x≤3},
故答案為{x|x≤$\frac{2}{3}$或1<x≤3}.
點評 本題考查不等式的解法,考查學(xué)生轉(zhuǎn)化問題的能力,正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com