【題目】設(shè)0<x<1,a>0且a≠1,試比較|loga(1-x)|與|loga(1+x)|的大小.
【答案】|loga(1-x)|>|loga(1+x)|
【解析】主要考查對數(shù)運(yùn)算、對數(shù)函數(shù)的圖象和性質(zhì)。
解法一:作差法
|loga(1-x)|-|loga(1+x)|=| |-||=(|lg(1-x)|-|lg(1+x)|)
∵0<x<1,∴0<1-x<1<1+x
∴上式=-[(lg(1-x)+lg(1+x)]=-·lg(1-x2)
由0<x<1,得,lg(1-x2)<0,∴-·lg(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|
解法二:作商法
=|log(1-x)(1+x)|
∵0<x<1,∴0<1-x<1+x,∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)
由0<x<1,∴1+x>1,0<1-x2<1
∴0<(1-x)(1+x)<1,∴>1-x>0
∴0<log(1-x) <log(1-x)(1-x)=1
∴|loga(1-x)|>|loga(1+x)|
解法三:平方后比較大小
∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]
=loga(1-x2)·loga=·lg(1-x2)·lg
∵0<x<1,∴0<1-x2<1,0<<1
∴l(xiāng)g(1-x2)<0,lg<0
∴l(xiāng)oga2(1-x)>loga2(1+x),即|loga(1-x)|>|loga(1+x)|
解法四:分類討論去掉絕對值
當(dāng)a>1時,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)
∵0<1-x<1<1+x,∴0<1-x2<1
∴l(xiāng)oga(1-x2)<0,∴-loga(1-x2)>0
當(dāng)0<a<1時,由0<x<1,則有l(wèi)oga(1-x)>0,loga(1+x)<0
∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0
∴當(dāng)a>0且a≠1時,總有|loga(1-x)|>|loga(1+x)|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖,在正四面體中,分別是棱的中點(diǎn).
(1)求證:四邊形是平行四邊形;
(2)求證:平面;
(3)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”
(1)已知二次函數(shù)(且),試判斷是否為“局部奇函數(shù)”,并說明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為定義域?yàn)?/span>上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校數(shù)學(xué)系2016年高等代數(shù)試題有6個題庫,其中3個是新題庫(即沒有用過的題庫),3個是舊題庫(即至少用過一次的題庫),每次期末考試任意選擇2個題庫里的試題考試.
(1)設(shè)2016年期末考試時選到的新題庫個數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)已知2016年時用過的題庫都當(dāng)作舊題庫,求2017年期末考試時恰好到1個新題庫的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義滿足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”的集合A為“閉集”.試問數(shù)集N,Z,Q,R是否分別為“閉集”?若是,請說明理由;若不是,請舉反例說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫出一個含3個元素的可倒數(shù)集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , , ,點(diǎn)是邊的中點(diǎn),將沿折起,使平面平面,連接, , ,得到如圖所示的幾何體.
(Ⅰ)求證: 平面.
(Ⅱ)若, 與其在平面內(nèi)的正投影所成角的正切值為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設(shè)a=2,函數(shù)f(x)的定義域?yàn)?/span>[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com