【題目】華為公司在2017年8月9日推出的一款手機(jī),已于9月19日正式上市.據(jù)統(tǒng)計(jì)發(fā)現(xiàn)該產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(百萬(wàn)元) | 4 | 2 | 3 | 5 |
銷(xiāo)售額y(百萬(wàn)元) | 44 | 25 | 37 | 54 |
根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)測(cè)廣告費(fèi)用為6百萬(wàn)元時(shí),銷(xiāo)售額為( )
A.61.5百萬(wàn)元B.62.5百萬(wàn)元C.63.5百萬(wàn)元D.65.0百萬(wàn)元
【答案】C
【解析】
首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點(diǎn),根據(jù)線(xiàn)性回歸直線(xiàn)過(guò)樣本中心點(diǎn),求出方程中的一個(gè)系數(shù),得到線(xiàn)性回歸方程,把自變量為6代入,預(yù)報(bào)出結(jié)果.
由題意,根據(jù)表格中數(shù)據(jù),則有,
數(shù)據(jù)的樣本中心點(diǎn)在線(xiàn)性回歸直線(xiàn)上,且回歸方程中的為,
,
,
線(xiàn)性回歸方程是,
廣告費(fèi)用為6萬(wàn)元時(shí)銷(xiāo)售額為百萬(wàn)元.
故選:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與的圖象上存在關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn),求實(shí)數(shù)的取值范圍;
(2)設(shè),已知在上存在兩個(gè)極值點(diǎn),且,求證:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體中,E、F、G、H分別為、BC、CD、BB、的中點(diǎn),則下列結(jié)論正確的是( )
A.B.平面平面
C.面AEFD.二面角的大小為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為降低養(yǎng)殖戶(hù)養(yǎng)鴨風(fēng)險(xiǎn),某保險(xiǎn)公司推出了鴨意外死亡保險(xiǎn),該保單合同規(guī)定每只幼鴨投保2元,若生長(zhǎng)期內(nèi)鴨意外死亡,則公司每只鴨賠付12元.假設(shè)鴨在生長(zhǎng)期內(nèi)的意外死亡率為0.15,且每只鴨是否死亡相互獨(dú)立.若某養(yǎng)殖戶(hù)養(yǎng)鴨3000只,都投保該險(xiǎn)種.
(1)求該保單保險(xiǎn)公司賠付金額等于保費(fèi)時(shí),鴨死亡的只數(shù);
(2)求該保單保險(xiǎn)公司平均獲利多少元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=1,b1=﹣1,a2-b2=2.
(1)若a3-b3=6,求{bn}的通項(xiàng)公式
(2)若T3=﹣13,求S5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校開(kāi)展的高二“學(xué)工學(xué)農(nóng)”某天的活動(dòng)安排中,有采茶,摘櫻桃,摘草莓,鋤草,栽樹(shù),喂奶牛共六項(xiàng)活動(dòng)可供選擇,每個(gè)班上午,下午各安排一項(xiàng)(不重復(fù)),且同一時(shí)間內(nèi)每項(xiàng)活動(dòng)都只允許一個(gè)班參加,則該天甲,乙兩個(gè)班的活動(dòng)安排方案的種數(shù)為:________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|lnx|,g(x)=,則方程|f(x)+g(x)|=1實(shí)根的個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若且,設(shè)是函數(shù)的零點(diǎn).
(i)證明:時(shí)存在唯一且;
(ii)若,記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃河被稱(chēng)為我國(guó)的母親河,它的得名據(jù)說(shuō)來(lái)自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來(lái)自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫(kù)附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線(xiàn),設(shè)黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設(shè)從交匯處開(kāi)始沿岸設(shè)有若干個(gè)觀測(cè)點(diǎn),兩股河水在流經(jīng)相鄰的觀測(cè)點(diǎn)的過(guò)程中,其混合效果相當(dāng)于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.
(1)求經(jīng)過(guò)第二個(gè)觀測(cè)點(diǎn)時(shí),兩股河水的含沙量;
(2)從第幾個(gè)觀測(cè)點(diǎn)開(kāi)始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com