函數(shù)f(x)是定義在R上的偶函數(shù),對于任意的實數(shù)x,都有f(x)•f(x+1)=1,則f(
7
2
)=
 
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:要用遞推的方法,用賦值法求得.
解答: 解:∵f(x)•f(x+1)=1
令x=-
1
2
,
則f(-
1
2
)•f(-
1
2
+1)=1,
∴f(-
1
2
)•f(
1
2
)=1,
∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(
1
2
)•f(
1
2
)=1
∴f(
1
2
)=±1,
再令x=
1
2
,
則f(
1
2
)•f(
3
2
)=1,
∴f(
3
2
)=±1,
再令x=
3
2
,
則f(
3
2
)•f(
5
2
)=1,
∴f(
5
2
)=±1,
再令x=
5
2
,
f(
5
2
)•f(
7
2
)=1
∴f(
7
2
)=±1,
故答案為:±1
點評:本題主要考查利用函數(shù)的主條件用遞推的方法求函數(shù)值,這類問題關(guān)鍵是將條件和結(jié)論有機地結(jié)合起來,作適當變形,把握遞推的規(guī)律.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若偶函數(shù)f(x)滿足f(x+1)=f(x-1),且x∈[0,1]時,f(x)=
x
,則f(
7
2
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
3-2x-x2
的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當x>0時,f(x)=x2-2,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從某小學隨機抽取100名學生,將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學生中,用分層抽樣的方法選取20人參加一項活動,則從身高在[120,130)內(nèi)的學生中選取的人數(shù)應為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過曲線C上任意一點P作直線x=-2p(p>0)的垂線,垂足為M,且OP⊥OM.
(1)求曲線C的方程;
(2)設(shè)A、B是曲線C兩個不同點,直線OA和OB的傾斜角分別為α和β,當α,β變化且α+β為定值θ(0<θ<π)時,證明直線AB恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列哪個函數(shù)與y=x是相同函數(shù)( 。
A、y=
x2
B、y=
x2
x
C、y=
3x3
D、y=alogax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在x∈R上恒有f(-x)=f(x),若對于x≥0,都有f(x+2)=f(x),且當x∈[0,2)時,f(x)=log2(x+1),則f(-2014)+f(2015)的值為(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知從A口袋中摸出一個球是紅球的概率為
1
3
,從B口袋中摸出一個球是紅球的概率為
2
5
.現(xiàn)從兩個口袋中各摸出一個球,那么這兩個球中沒有紅球的概率是( 。
A、
2
15
B、
2
5
C、
7
15
D、
3
5

查看答案和解析>>

同步練習冊答案