【題目】已知點,點是直線上的動點,過作直線 ,線段的垂直平分線與交于點

(1)求點的軌跡的方程;

(2)若點是直線上兩個不同的點,且的內切圓方程為,直線的斜率為,求的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)利用拋物線定義求解即可;

(2)設出的三個頂點的坐標,表示出的解析式,化簡之后可得為關于的方程的兩根,然后由韋達定理表示的長度,最后在中消去參數(shù),故可以得到的取值范圍.

試題解析: (1)據(jù)題設分析知,點的軌跡是以點為焦點,直線為準線的拋物線,所以曲線的方程為.

(2)設,點,點,

直線的方程為,

化簡,得,

又因為內切圓的方程為

所以圓心到直線的距離為1,即,

所以,

由題意,得,所以.

同理,有,

所以是關于的方程的兩根,

所以因為

所以.

因為

所以.

直線的斜率,則

所以.

因為函數(shù)上單調遞增,所以當時, ,

所以,所以,

所以.所以的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產經(jīng)驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布

(1)假設生產狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在

之外的零件數(shù),求;

(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查.

下面是檢驗員在一天內抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得, ,其中為抽取的第個零件的尺寸,

用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(精確到0.01).

附:若隨機變量服從正態(tài)分布,則

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】語文成績服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如下:

)如果成績大于135的為特別優(yōu)秀,這500名學生中本次考試語文、數(shù)學特別優(yōu)秀的大約各多少人?(假設數(shù)學成績在頻率分布直方圖中各段是均勻分布的)

)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從()中的這些同學中隨機抽取3人,設三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學期望.

(附參考公式)若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認為城市擁堵與認可共享單車有關:

合計

認可

不認可

合計

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點是, ,且橢圓經(jīng)過點.

(1)求橢圓的標準方程;

(2)若過橢圓的左焦點且斜率為1的直線與橢圓交于兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),的導函數(shù).

(Ⅰ)當時,求證;

(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為橢圓的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線與橢圓有且僅有一個交點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線軸交于,過點的直線與橢圓交于兩不同點, ,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總人數(shù).現(xiàn)對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據(jù)對學生的了解,預估了每道題的難度,如下表所示:

題號

1

2

3

4

5

考前預估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

學生編號 題號

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學生每道題實測的答對人數(shù)及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數(shù);

題號

1

2

3

4

5

實測答對人數(shù)

實測難度

(Ⅱ)從編號為155人中隨機抽取2人,求恰好有1人答對第5題的概率;

Ⅲ)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中, 分別是角的對邊,且,若, ,則的面積為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案