精英家教網 > 高中數學 > 題目詳情

【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數, 為參加測試的總人數.現對某校高三年級120名學生進行一次測試,共5道客觀題.測試前根據對學生的了解,預估了每道題的難度,如下表所示:

題號

1

2

3

4

5

考前預估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機抽取了10名學生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

學生編號 題號

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據題中數據,將抽樣的10名學生每道題實測的答對人數及相應的實測難度填入下表,并估計這120名學生中第5題的實測答對人數;

題號

1

2

3

4

5

實測答對人數

實測難度

(Ⅱ)從編號為155人中隨機抽取2人,求恰好有1人答對第5題的概率;

Ⅲ)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預估難度.規(guī)定:若,則稱該次測試的難度預估合理,否則為不合理.判斷本次測試的難度預估是否合理.

【答案】(Ⅰ);(Ⅱ);見解析.

【解析】試題分析:(Ⅰ)根據表中數據,估計120人中有人答對第5題

)根據古典概型計算得到;

根據方差計算公式求解即可.

試題解析:

(Ⅰ)每道題實測的答對人數及相應的實測難度如下表:

題號

1

2

3

4

5

實測答對人數

8

8

7

7

2

實測難度

0.8

0.8

0.7

0.7

0.2

所以,估計120人中有人答對第5題

)記編號為的學生為,從這5人中隨機抽取2人,不同的抽取方法有10種.

其中恰好有1人答對第5題的抽取方法為, , , , , ,共6種.

所以,從抽樣的10名學生中隨機抽取2名答對至少4道題的學生,恰好有1人答對第5題的概率為

為抽樣的10名學生中第題的實測難度,用作為這120名學生第題的實測難度

因為 ,所以,該次測試的難度預估是合理的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點 上任意一點.

(1)求證: ;

(2)已知二面角的余弦值為,若的中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點

(1)求點的軌跡的方程;

(2)若點是直線上兩個不同的點,且的內切圓方程為,直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若在區(qū)間上單調遞增,求實數的取值范圍;

(2)若存在唯一整數,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,設為曲線在點處的切線,其中.

(Ⅰ)求直線的方程(用表示);

(Ⅱ)求直線軸上的截距的取值范圍;

(Ⅲ)設直線分別與曲線和射線)交于, 兩點,求的最小值及此時的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(1)求函數的極值;

(2)當時,若直線 與曲線沒有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

設函數.

(1)求解不等式的解集;

(2)若函數的定義域為R,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數在定義域內的極值點的個數;

(2)若函數處取得極值,對任意的恒成立,,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案