考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:考察對(duì)數(shù)函數(shù)的性質(zhì),先判斷函數(shù)在定義域上單調(diào)遞增,函數(shù)圖象為上凸函數(shù),然后判斷即可.
解答:
解:函數(shù)f(x)=log
2x-1在定義域(0,+∞)單調(diào)遞增,
則對(duì)于滿足0<x
1<x
2的任意實(shí)數(shù)x
1、x
2,給出下列結(jié)論:
①∵0<x
1<x
2,∴x
2-x
1>0,當(dāng)∵[f(x
2)-f(x
1)](x
2-x
1)<0時(shí),f(x
2)-f(x
1)<0,即f(x
2)<f(x
1),函數(shù)單調(diào)遞減,與題意函數(shù)單調(diào)遞增矛盾,①錯(cuò)誤,
②函數(shù)圖象為上凸型函數(shù),則
>
⇒x
2f(x
1)>x
1f(x
2),②正確;
③f(x
2)-f(x
1)>x
2-x
1?
>1,即函數(shù)圖象上任意兩點(diǎn)連線的斜率都大于1,而求導(dǎo)得
f′(x)=
不恒大于1,③錯(cuò)誤;
④
<f(),函數(shù)圖象為上凸函數(shù),④正確,
故答案為:②④
點(diǎn)評(píng):本題解題的關(guān)鍵在于數(shù)形結(jié)合,利用圖象解題,這是高中數(shù)學(xué)中重要的思想方法.