【題目】袋中有質(zhì)地、大小完全相同的5個小球,編號分別為1,2,3,4,5,甲、乙兩人玩一種游戲.甲先摸出一個球.記下編號,放回后再摸出一個球,記下編號,如果兩個編號之和為偶數(shù).則算甲贏,否則算乙贏.
(1)求甲贏且編號之和為6的事件發(fā)生的概率:
(2)試問:這種游戲規(guī)則公平嗎.請說明理由.

【答案】
(1)解:由題意知本題是一個古典概型,

試驗(yàn)發(fā)生包含的甲、乙兩人取出的數(shù)字共有5×5=25(個)等可能的結(jié)果,

設(shè)“兩個編號和為6”為事件A,

則事件A包含的基本事件為(1,5),(2,4),(3,3),(4,2),(5,1)共5個,

根據(jù)古典概型概率公式得到P(A)= =


(2)解:這種游戲規(guī)則是不公平的.

設(shè)甲勝為事件B,乙勝為事件C,

則甲勝即兩編號和為偶數(shù)所包含的基本事件數(shù)有13個:

(1,1),(1,3),(1,5),(2,2),(2,4),

(3,1),(3,3),(3,5),(4,2),(4,4),

(5,1),(5,3),(5,5)

∴甲勝的概率P(B)=

乙勝的概率P(C)=1﹣P(B)=

∴這種游戲規(guī)則是不公平的


【解析】(1)本題是一個古典概型,試驗(yàn)發(fā)生包含的甲、乙兩人取出的數(shù)字共有5×5種等可能的結(jié)果,滿足條件的事件可以通過列舉法得到,根據(jù)古典概型的概率公式得到結(jié)果.(2)要判斷這種游戲是否公平,只要做出甲勝和乙勝的概率,先根據(jù)古典概型做出甲勝的概率,再由1減去甲勝的概率,得到乙勝的概率,得到兩個人勝的概率相等,得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+(m+2)x+(2m+5)(m≠0)的兩個零點(diǎn)分別在區(qū)間(﹣1,0)和區(qū)間(1,2)內(nèi),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增等比數(shù)列{an}的第三項(xiàng)、第五項(xiàng)、第七項(xiàng)的積為512,且這三項(xiàng) 分別減去1,3,9后成等差數(shù)列.
(1)求{an}的首項(xiàng)和公比;
(2)設(shè)Sn=a12+a22+…+an2 , 求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用an表示自然數(shù)n的所有因數(shù)中最大的那個奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項(xiàng)和為Sn , 則S =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過點(diǎn)F1作直線PF1的垂線l1,過點(diǎn)F2作直線PF2的垂線l2.

(1)求橢圓E的標(biāo)準(zhǔn)方程;

(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列an的首項(xiàng)a1=2,且an=2an1﹣1(nN+ , n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan﹣n}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距d(m)與車速v(km/h)和車身長l(m)的關(guān)系滿足:d=kv2l+ l(k為正的常數(shù)),假定大橋上的車的車身長都為4m,當(dāng)車速為60km/h時,車距為2.66個車身長.
(1)寫出車距d關(guān)于車速v的函數(shù)關(guān)系式;
(2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時通過的車輛最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時,該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn),且|MN|= ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

表一:男生

表二:女生

(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;

(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

同步練習(xí)冊答案