不等式x2-3x+6>4的解集為
 
考點:一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:把不等式x2-3x+6>4化為(x-1)(x-2)>0,再求出不等式的解集.
解答: 解:由x2-3x+6>4得,x2-3x+2>0,
則(x-1)(x-2)>0,解得x>2或x<1,
則不等式的解集是{x|x>2或x<1},
故答案為:{x|x>2或x<1}.
點評:本題考查一元二次不等式的解法,注意因式分解的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d≠0,a1≠d,若前20項的和S20=10M,則M等于( 。
A、a1+2a10
B、a6+a15
C、a20+d
D、2a10+2d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+x
+
x
1-x
的定義域是(  )
A、[-1,+∞)
B、(-∞,-1]
C、[-1,1)∪(1,+∞)
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,且滿足x-2y-1≥0,則T=x2+y2+4x-2y的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,如果?x∈D,存在唯一的y∈D,使
f(x)+f(y)
2
=C(C為常數(shù))成立.則稱函數(shù)f(x)在D上的“均值”為C.已知四個函數(shù):①y=x3(x∈R);②y=(
1
2
)
x
(x∈R);③y=lnx(x∈(0,+∞));④y=
x
上述四個函數(shù)中,滿足所在定義域上“均值”為1的函數(shù)是
 
.(填入所有滿足條件函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分別是AB,A1C的中點.
(1)求證:BC⊥平面BB1A1A;
(2)求證:MN∥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:log3x>log3y,q:3x>3y,則p是q的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
3
5
,an+1=
3an
2an+1
,請證明a1+a2+…+an
n2
n+1
(用數(shù)學(xué)歸納法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知12x=3,12y=2,則8
1-2x
1-x+y
 的值為
 

查看答案和解析>>

同步練習(xí)冊答案