12.已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),過F2作垂直于實(shí)軸的直線PQ交雙曲線于P,Q兩點(diǎn),若∠PF1Q=$\frac{π}{2}$,則雙曲線的離心率e等于(  )
A.$\sqrt{2}$+2B.$\sqrt{2}$+1C.$\sqrt{2}$D.$\sqrt{2}$-1

分析 根據(jù)題設(shè)條件我們知道|PQ|=$\frac{2^{2}}{a}$,|F1F2|=2c,|QF1|=$\frac{^{2}}{a}$,因?yàn)椤螾F2Q=90°,則2($\frac{^{4}}{{a}^{2}}$+4c2)=$\frac{4^{4}}{{a}^{2}}$,據(jù)此可以推導(dǎo)出雙曲線的離心率.

解答 解:由題意可知通徑|PQ|=$\frac{2^{2}}{a}$,|F1F2|=2c,|QF1|=$\frac{^{2}}{a}$,
∵∠PF2Q=90°,∴2($\frac{^{4}}{{a}^{2}}$+4c2)=$\frac{4^{4}}{{a}^{2}}$,∴b4=4a2c2
∵c2=a2+b2,∴c4-6a2c2+a4=0,∴e4-6e2+1=0
∴e2=3+2$\sqrt{2}$或e2=3-2$\sqrt{2}$(舍去)
∴e=$\sqrt{2}$+1.
故選B.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì),考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.統(tǒng)計(jì)某產(chǎn)品的廣告費(fèi)用x與銷售額y的一組數(shù)據(jù)如表:
廣告費(fèi)用x2356
銷售額y7m912
若根據(jù)如表提供的數(shù)據(jù)用最小二乘法可求得y對(duì)x的回歸直線方程是$\stackrel{∧}{y}$=1.1x+4.6,則數(shù)據(jù)中的m的值應(yīng)該是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,b=sin(A+C),cos(A-C)+cosB=$\sqrt{3}$c.
(1)求角A的大;
(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{3}$),則f(x)的單調(diào)遞增區(qū)間為(  )
A.(kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$),k∈ZB.(kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$),k∈Z
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈ZD.(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-6≤0}\\{0≤y≤3}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m等于( 。
A.$\frac{5}{4}$B.-$\frac{5}{6}$C.1D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x(x-2)=0},B={x∈Z|4x2-9≤0},則A∪B等于(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.[-2,2]D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2lnx-3x2-11x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成,求整數(shù)a的最小值;
(3)若正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+4(x12+x22)+12(x1+x2)=4,證明:x1+x2≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線的實(shí)軸長(zhǎng)為2a(a>0),一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果原點(diǎn)到直線FB的距離恰好為實(shí)半軸長(zhǎng),那么雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2y-x的最大值為(  )
A.14B.13C.12D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案