以下說(shuō)法中,正確的個(gè)數(shù)是(  )
①平面α內(nèi)有一條直線和平面β平行,那么這兩個(gè)平面平行
②平面α內(nèi)有兩條直線和平面β平行,那么這兩個(gè)平面平行
③平面α內(nèi)有無(wú)數(shù)條直線和平面β平行,那么這兩個(gè)平面平行
④平面α內(nèi)任意一條直線和平面β都無(wú)公共點(diǎn),那么這兩個(gè)平面平行.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用面面平行的判定及定義判斷即可.
解答: 解:①平面α內(nèi)有一條直線和平面β平行,那么這兩個(gè)平面可能平行也可能相交;
②平面α內(nèi)這兩條直線平行時(shí),此時(shí)這兩個(gè)平面也可能相交;
③平面α內(nèi)無(wú)數(shù)條直線都平行時(shí),此時(shí)這兩個(gè)平面也可能相交;
④顯然正確.
故選:B
點(diǎn)評(píng):本題考查面面平行的判定,掌握好面面平行定理及定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

t
0
(2x-3)dx=4,則正數(shù)t=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
3
sinx-cosx的最大值為( 。
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“所有9的倍數(shù)都是3的倍數(shù),某奇數(shù)是9的倍數(shù),故某奇數(shù)是3的倍數(shù).”上述推理是( 。
A、正確的B、大前提錯(cuò)
C、小前提錯(cuò)D、結(jié)論錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
2x
-2sinπx(-1≤x≤2)的所有零點(diǎn)之和為( 。
A、2B、6C、4D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不過(guò)原點(diǎn)的直線l 與y=x2交于A、B兩點(diǎn),若使得以AB為直徑的圓過(guò)原點(diǎn),則直線l必過(guò)點(diǎn)( 。
A、(0,1)
B、(1,0)
C、(0,2)
D、(1,0),(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2
2x+b
的圖象在點(diǎn)(2,f(2))處的切線方程為y=2.
(Ⅰ)求a,b的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在平行于直線y=
1
2
x且與曲線y=f(x)沒(méi)有公共點(diǎn)的直線?證明你的結(jié)論;
(Ⅲ)設(shè)數(shù)列{an}滿足a1=λ(λ≠l),an+1=f(an),若{an}是單調(diào)數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=4x的頂點(diǎn)作射線OA,OB與拋物線交于A,B,若
OA
OB
=2,求證:直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1∈[0,1],2an=3-an-1,n=2,3,4…,求通項(xiàng)公式an

查看答案和解析>>

同步練習(xí)冊(cè)答案