【題目】記Sn為正項等比數(shù)列{an}的前n項和,若 ﹣7 ﹣8=0,且正整數(shù)m,n滿足a1ama2n=2 ,則 + 的最小值是( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.
(1)求的值,并計算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(, =2.718………),
(I) 當時,求函數(shù)的單調(diào)區(qū)間;
(II)當時,不等式對任意恒成立,
求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是圓的直徑,點是圓上異于、的點,直線度平面, 、分別是、的中點.
(Ⅰ)設(shè)平面與平面的交線為,求直線與平面所成角的余弦值;
(Ⅱ)設(shè)(Ⅰ)中的直線與圓的另一個交點為點,且滿足, ,當二面角的余弦值為時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉(zhuǎn)成.若為線段的中點,則在翻折過程中:
①是定值;②點在某個球面上運動;
③存在某個位置,使;④存在某個位置,使平面.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計, 可以使得工廠產(chǎn)生的噪聲對居民的影響最小(即工廠與村莊的距離最遠).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“隨機模擬方法”計算曲線與直線, 所圍成的曲邊三角形的面積時,用計算機分別產(chǎn)生了10個在區(qū)間上的均勻隨機數(shù)和10個區(qū)間上的均勻隨機數(shù)(, ),其數(shù)據(jù)如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個曲邊三角形面積的一個近似值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A、B、C三點滿足 = + .
(1)求證:A、B、C三點共線;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)= +(2m+ )| |+m2的最小值為5,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點,直線與(為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com