【題目】中華民族是一個(gè)傳統(tǒng)文化豐富多彩的民族,各民族有許多優(yōu)良的傳統(tǒng)習(xí)俗,如過(guò)大年吃餃子,元宵節(jié)吃湯圓,端午節(jié)吃粽子,中秋節(jié)吃月餅等等,讓人們感受到濃濃的節(jié)目味道,某家庭過(guò)大年時(shí)包有大小和外觀(guān)完全相同的肉餡餃子、蛋餡餃子和素餡餃子,一家4口人圍坐在桌旁吃年夜飯,當(dāng)晚該家庭吃餃子時(shí)每盤(pán)中混放8個(gè)餃子,其中肉餡餃子4個(gè),蛋餡餃子和素餡餃子各2個(gè),若在桌上上一盤(pán)餃子大家共同吃,記每個(gè)人第1次夾起的餃子中肉餡餃子的個(gè)數(shù)為,若每個(gè)人各上一盤(pán)餃子,記4個(gè)人中第1次夾起的是肉餡餃子的人數(shù)為假設(shè)每個(gè)人都吃餃子,且每人每次都是隨機(jī)地從盤(pán)中夾起餃子.

1)求隨機(jī)變量的分布列;

(2)若的數(shù)學(xué)期望分別記為,.

【答案】(1)見(jiàn)解析(2)4

【解析】【試題分析】(1)隨機(jī)變量的可能取值為,利用超幾何分布的知識(shí)可求得點(diǎn)的分布列.(2)利用(1)的結(jié)果求得的值.由于滿(mǎn)足二項(xiàng)分布,故用二項(xiàng)分布期望公式求得的值.

【試題解析】

(1)隨機(jī)變量的可取值為0,1,2,3,4

故隨機(jī)變量X的分布列為:

X

0

1

2

3

4

P

(2)隨機(jī)變量X服從超幾何分布: ;

隨機(jī)變量.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若曲線(xiàn)在點(diǎn) 處的切線(xiàn)方程為.

(Ⅰ)求的解析式;

(Ⅱ)求證:在曲線(xiàn)上任意一點(diǎn)處的切線(xiàn)與直線(xiàn)所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線(xiàn)為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),曲線(xiàn)軸交于點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為.

(1)若拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為4,直線(xiàn),求直線(xiàn)截拋物線(xiàn)所得的弦長(zhǎng);

(2)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)兩點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的切線(xiàn),兩切線(xiàn)相交于點(diǎn),若分別表示直線(xiàn)與直線(xiàn)的斜率,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018衡水金卷(三)如圖所示,在三棱錐中,平面平面, ,

I)證明: 平面;

II)若二面角的平面角的大小為,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)在傾斜角為的直線(xiàn)上,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的方程為.

(1)寫(xiě)出的參數(shù)方程及的直角坐標(biāo)方程;

(2)設(shè)相交于兩點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案