【題目】黃種人群中各種血型的人所占的比例如下:

血型

A

B

AB

O

該血型的人所占比例(%)

28

29

8

35

已知同種血型的人可以輸血,O型血可以輸給任何一種血型的人,其他不同血型的人不能互相輸血,小明是B型血,若小明因病需要輸血,問:

(1)任找一個(gè)人,其血可以輸給小明的概率是多少?

(2)任找一個(gè)人,其血不能輸給小明的概率是多少?

【答案】(1)0.64.(2)0.36.

【解析】試題分析:(1)對于任何1個(gè)人,其血型為型血的事件分別記為,它們是互斥的,利用互斥事件的概率公式可求概率;(2)利用對立事件的概率公式,可求任找一人,其血不能輸給小明的概率.

試題解析:(1)對任一人,其血型為型血的事件分別記為,它們是互斥的.由已知,有,,,.因?yàn)?/span>型血可以輸給型血的人,故“可以輸給型血的人”為事件.根據(jù)互斥事件的加法公式,有.

(2)由于型血不能輸給型血的人,故“不能輸給型血的人”為事件,且.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左右頂點(diǎn)分別為,右焦點(diǎn)為,焦距為,點(diǎn)是橢圓C上異于兩點(diǎn)的動(dòng)點(diǎn), 的面積最大值為.

(1)求橢圓C的方程;

(2)若直線與直線交于點(diǎn),試判斷以為直徑的圓與直線的位置關(guān)系,并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線不過原點(diǎn).

(1)求過點(diǎn)且與直線垂直的直線的方程;

(2)直線與兩坐標(biāo)軸相交于AB兩點(diǎn),若直線與點(diǎn)A、B的距離相等,且過原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一房產(chǎn)商競標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ= ,半徑為R=200m,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請你通過計(jì)算,為房產(chǎn)商提供決策建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品.為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示:

已知.

(1)求出的值;

(2)已知變量 具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回歸方程

(3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)的殘差的絕對值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)銷售數(shù)據(jù)中至少有1個(gè)是“好數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=asin2x+bcos2x(ab≠0),有下列四個(gè)命題:其中正確命題的序號(hào)為(填上所有正確命題的序號(hào))
①若a=1,b=﹣ ,要得到函數(shù)y=f(x)的圖象,只需將函數(shù)y=2sin2x的圖象向右平移 個(gè)單位;
②若a=1,b=﹣1,則函數(shù)y=f(x)的一個(gè)對稱中心為( ,0);
③若y=f(x)的一條對稱軸方程為x= ,則a=b;
④若方程asin2x+bcos2x=m的正實(shí)數(shù)根從小到大依次構(gòu)成一個(gè)等差數(shù)列,則這個(gè)等差數(shù)列的公差為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱的圓為.

(1)求圓的方程;

(2)過點(diǎn)作直線與圓交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)分別到兩定點(diǎn) 連線的斜率之乘積為,設(shè)的軌跡為曲線, 分別為曲線的左右焦點(diǎn),則下列命題中:

(1)曲線的焦點(diǎn)坐標(biāo)為, ;

(2)若,則 ;

(3)當(dāng)時(shí), 的內(nèi)切圓圓心在直線上;

(4)設(shè),則的最小值為.

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β∈( ,π),sin(α+β)=﹣ ,sin(β﹣ )= ,則cos(α+ )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

同步練習(xí)冊答案