已知向量
a
、
b
滿足|
a
|=1,|
b
|=
3
,且(3
a
-2
b
a
,則
a
b
的夾角為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:通過向量的垂直轉(zhuǎn)化為向量的數(shù)量積的運算,求出角的大小即可.
解答: 解:(3
a
-2
b
a
,可得(3
a
-2
b
a
=0
,即3|
a
|2-2
a
b
=0,
a
b
=
3
2
=3|
a
|2=|
a
|•|
b
|cos<
a
,
b

cos
a
,
b
=
3
2
3
=
3
2
,∴
a
,
b
=
π
6

故選:A.
點評:本題考查向量的數(shù)量積的運算,向量的垂直體積的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-x+
k
2
x2,(k>0,且k≠1).
(Ⅰ)當k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)減區(qū)間;
(Ⅲ)當k=0時,設(shè)f(x)在區(qū)間[0,n](n∈N*)上的最小值為bn,令an=ln(1+n)-bn
求證:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4..a2n
2an+1
-1,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c,給出四個命題:上述四個命題中所有正確的命題序號是
 

①c=0時,有f(-x)=-f(x)成立;
②b=0,c>0時,函數(shù)y=f(x)只有一個零點;
③y=f(x)的圖象關(guān)于點(0,c)對稱;
④函數(shù)y=f(x),至多有兩個不同零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球.現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.設(shè)ξ為取出的4個球中紅球的個數(shù),則ξ的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)圖象的相鄰兩條對稱軸之間的距離等于
π
2
,則f(
π
8
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)在時間間隔T內(nèi)的任何時刻,兩條不相關(guān)的短信機會均等地進入同一臺手機.若這兩條短信進入手機的間隔時間不大于t(0<t<T)稱手機受到干擾,則手機受到干擾的概率是( 。
A、(
t
T
2
B、(1-
t
T
2
C、1-(
t
T
2
D、1-(1-
t
T
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)函數(shù)y=sin(3x+
π
3
)cos(x-
π
6
)+cos(3x+
π
3
)sin(x-
π
6
)的圖象的一條對稱軸的方程是( 。
A、x=-
π
24
B、x=-
π
12
C、x=
π
12
D、x=
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中正確的命題序號是(  )
①向量
a
,
b
共線的充分必要條件是存在唯一實數(shù)λ,使
a
b
成立.
②函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對稱.
③ysinθ-cosθ=2y(θ∈[0,π])成立的充分必要條件是|2y|≤
1+y2

④已知U為全集,則x∉A∩B的充分條件是x∈(∁UA)∩(∁UB).
A、②④B、①②C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
(1)命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
(3)對于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0)
,則有當a=1時,?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點;
(4)
1
0
1-x2
dx≤
e
1
1
x
dx

(5)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常數(shù),又s+2t的最小值是1,則m+3n=7.
其中正確的個數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案