分析 (1)由弦定理化簡已知可得$sinAsinB=\sqrt{3}sinBcosA$,結合sinB≠0,可求$tanA=\sqrt{3}$,結合范圍0<A<π,可求A的值.
(2)解法一:由余弦定理整理可得:c2-2c-3=0.即可解得c的值,利用三角形面積公式即可計算得解.
解法二:由正弦定理可求sinB的值,利用大邊對大角可求B為銳角,利用同角三角函數(shù)基本關系式可求cosB,利用兩角和的正弦函數(shù)公式可求sinC,進而利用三角形面積公式即可計算得解.
解答 (本題滿分為14分)
解:(1)∵$asinB=\sqrt{3}bcosA$,由正弦定理得$sinAsinB=\sqrt{3}sinBcosA$.…(3分)
又sinB≠0,
從而$tanA=\sqrt{3}$.…(5分)
由于0<A<π,
所以$A=\frac{π}{3}$.…(7分)
(2)解法一:由余弦定理a2=b2+c2-2bccosA,而$a=\sqrt{7},b=2,A=\frac{π}{3}$,…(9分)
得7=4+c2-2c=13,即c2-2c-3=0.
因為c>0,所以c=3.…(11分)
故△ABC的面積為S=$\frac{1}{2}bcsinA=\frac{{3\sqrt{3}}}{2}$.…(14分)
解法二:由正弦定理,得$\frac{{\sqrt{7}}}{{sin\frac{π}{3}}}=\frac{2}{{sin{B}}}$,
從而$sinB=\frac{{\sqrt{21}}}{7}$,…(9分)
又由a>b知A>B,
所以$cosB=\frac{{2\sqrt{7}}}{7}$.
故$sinC=sin({A+B})=sin({B+\frac{π}{3}})=sinBcos\frac{π}{3}+cosBsin\frac{π}{3}=\frac{{3\sqrt{21}}}{14}$.…(12分)
所以△A BC的面積為$\frac{1}{2}bc{sinA}=\frac{{3\sqrt{3}}}{2}$.…(14分)
點評 本題主要考查了正弦定理,余弦定理,三角形面積公式,大邊對大角,同角三角函數(shù)基本關系式,兩角和的正弦函數(shù)公式在解三角形中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
合一斗 | 斗麻利 | 文士生 | 講頭知尾 | 正功夫 |
115 | 230 | 115 | 345 | 460 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sin(3x+1) | B. | y=sin($\frac{1}{3}$x-1) | C. | y=sin(3x+3) | D. | y=sin($\frac{1}{3}$x-3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com