已知α是第二象限角,且tanα=-
5
12
,則sinα=
 
考點:同角三角函數(shù)間的基本關(guān)系
專題:三角函數(shù)的求值
分析:直接利用同角三角函數(shù)的基本關(guān)系式,求解即可.
解答: 解:tanα=
sinα
cosα
=-
5
12
,∴cosα=-
12
5
sinα,
∵sin2α+cos2α=1,
∴sin2α=
25
169
,又α是第二象限角,sinα>0,
∴sinα=
5
13

故答案為:
5
13
點評:本題考查同角三角函數(shù)基本關(guān)系式,三角函數(shù)值在各象限的符號.要做到牢記公式,并熟練應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

求過點(0,1)和(0,3),且半徑為1的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f1(x)=
2x-1
x+1
.對于n=1,2,…定義fn+1(x)=f1(fn(x)),若f35(x)=f5(x),f28(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
sin(π+ωx),cosωx),
b
=(sin(
3
2
π-ωx),-cosωx),ω>0,設(shè)f(x)=
a
b
的最小正周期為π.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)當x∈(-
π
3
,
π
6
)時,求f(x)的值域;
(Ⅲ)求滿足f(α)=0且-1<α<π的角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
(sinx+cosx)-
1
2
|sinx-cosx|,x∈[0,2π],則f(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法不正確的是( 。
A、命題“對?x∈R,都有x2≥0”的否定為“?x0∈R,使得x02<0”
B、“a>b”是“ac2>bc2”的必要不充分條件
C、“若tanα≠
3
,則α≠
π
3
”是真命題
D、甲、乙兩位學(xué)生參與數(shù)學(xué)模擬考試,設(shè)命題p是“甲考試及格”,q是“乙考試及格”,則命題“至少有一位學(xué)生不及格”可表示為(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長分別為AB=5,BC=4,AC=3,M 是AB邊上的點,P是平面ABC外一點.給出下列四個命題:
①若PM丄平面ABC,且M是AB邊中點,則有PA=PB=PC;
②若PC=5,PC丄平面ABC,則△PCM面積的最小值為
15
2
;
③若PB=5,PB⊥平面ABC,則三棱錐P-ABC的外接球體積為
125
2
6
π;
④若PC=5,P在平面ABC上的射影是△ABC內(nèi)切圓的圓心,則三棱錐P-ABC的體積為2
23
;
⑤若PA=5,PA⊥平面ABC,則直線MP與平面PBC所成的最大角正切值為
5
3

其中正確命題的序號是
 
. (把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓(x-1)2+(y+2)2=4上的一點Q到點P(-
4
5
2
5
)的最短距離及這個點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說法中:
①對于任意的θ,圓C1與圓C2始終相切;
②對于任意的θ,圓C1與圓C2始終有四條公切線;
③直線l:2(m+3)x+3(m+2)y-(2m+5)=0(m∈R)與圓C2一定相交于兩個不同的點;
④P,Q分別為圓C1與圓C2上的動點,則|PQ|的最大值為4.
其中正確命題的序號為
 

查看答案和解析>>

同步練習冊答案