1.方程x2+y2-4x=0表示的圓的圓心和半徑分別為(  )
A.(-2,0),2B.(-2,0),4C.(2,0),2D.(2,0),4

分析 把圓的方程利用配方法化為標(biāo)準(zhǔn)方程后,即可得到圓心與半徑.

解答 解:把圓x2+y2-4x=0的方程化為標(biāo)準(zhǔn)方程得:(x-2)2+y2=4,
所以圓心坐標(biāo)為(2,0),半徑為2,
故選C.

點(diǎn)評(píng) 此題比較簡(jiǎn)單,要求學(xué)生會(huì)把圓的一般方程化為標(biāo)準(zhǔn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(1,0)$,$\overrightarrow c=(3,4)$,若λ為實(shí)數(shù),$(\overrightarrow a+λ\overrightarrow b)⊥\overrightarrow c$,則λ=(  )
A.$\frac{5}{3}$B.$\frac{1}{2}$C.$-\frac{5}{2}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a等于( 。
A.-1或3B.-1或3C.1或3D.1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知p:x<8,q:x<a,且q是p的充分而不必要條件,則a的取值范圍為a<8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),F(xiàn)為橢圓是上焦點(diǎn),點(diǎn)A,B分別為橢圓的左右頂點(diǎn),過點(diǎn)B作AF的垂線,垂足為N.
(1)若a=$\sqrt{2}$,△ABM的面積為1,求橢圓方程;
(2)是否存在橢圓,使得點(diǎn)B關(guān)于直線AF對(duì)稱的點(diǎn)D仍在橢圓上,若存在,求橢圓的離心率的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)三棱錐的三視圖如圖所示,則三棱錐的體積為(  )
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在四邊形ABCD中,AD=DC=CB=1,$AB=\sqrt{3}$,對(duì)角線$AC=\sqrt{2}$.將△ACD沿AC所在直線翻折,當(dāng)AD⊥BC時(shí),線段BD的長(zhǎng)度為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC各角的對(duì)應(yīng)邊分別為a,b,c,滿足$\frac{a}{b+c}+\frac{a+c}≥1$,則角C的范圍是( 。
A.$(0,\frac{π}{3}]$B.$(0,\frac{π}{6}]$C.$[\frac{π}{3},π)$D.$[\frac{π}{6},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在Rt△AOB中,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$|\overrightarrow{OA}|=\sqrt{5}$,$|\overrightarrow{OB}|=2\sqrt{5}$,AB邊上的高線為OD,點(diǎn)E位于線段OD上,若$\overrightarrow{OE}•\overrightarrow{EA}=\frac{3}{4}$,則向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影為$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案