△ABC的兩點A,B在直線l1:2x-y+3=0上,點C在直線l2:2x-y-1=0上,若△ABC的面積為2,則AB邊的長為__________.
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(θ)=sin θ+cos θ,其中,角θ的頂點與坐標原點重合,始邊與x軸非負半軸重合,終邊經(jīng)過點P(x,y),且0≤θ≤π.
(1)若點P的坐標為,求f(θ)的值;
(2)若點P(x,y)為平面區(qū)域Ω:上的一個動點,試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若k,-1,b三個數(shù)成等差數(shù)列,則直線y=kx+b必經(jīng)過定點( )
A.(1,-2) B.(1,2)
C.(-1,2) D.(-1,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點P(2,-1).
(1)求過點P且與原點距離為2的直線l的方程;
(2)求過點P且與原點距離最大的直線l的方程,最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于拋物線y2=4x上任意一點Q,點P(a,0)滿足|PQ|≥|a|,則a的取值范圍是( )
A.(-∞,0) B.(-∞,2]
C.[0,2] D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標系內(nèi),動圓C過定點F(1,0),且與定直線x=-1相切.
(1)求動圓圓心C的軌跡C2的方程;
(2)中心在O的橢圓C1的一個焦點為F,直線l過點M(4,0).若坐標原點O關(guān)于直線l的對稱點P在曲線C2上,且直線l與橢圓C1有公共點,求橢圓C1的長軸長取得最小值時的橢圓方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com