【題目】已知數(shù)列,其前項(xiàng)和為,滿足 ,其中, ,

.

1, ),求數(shù)列的前項(xiàng)和;

2,且求證:數(shù)列是等差數(shù)列.

【答案】(1) (2)見解析

【解析】試題分析: 根據(jù)已知條件得到,兩式相減得,得到求得的值,進(jìn)而得到,即可得到數(shù)列為以為首項(xiàng), 為公比的等比數(shù)列,然后求得數(shù)列的前項(xiàng)和;

,且代入,解得 ,猜想,用數(shù)學(xué)歸納法證明

解析:(1),所以.兩式相減得.

所以,即,

,所以,得

因此數(shù)列為以2為首項(xiàng),2為公比的等比數(shù)列. ,前n項(xiàng)和為

2)當(dāng)n = 2時, ,

所以. 可以解得,

所以, ,兩式相減得

. 猜想,下面用數(shù)學(xué)歸納法證明:

當(dāng)n = 12時, , ,猜想成立;

假設(shè)當(dāng))時, 成立

則當(dāng)時, 猜想成立.

、可知,對任意正整數(shù)n, .

所以為常數(shù),所以數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)從某校高一年級隨機(jī)抽取名學(xué)生,獲得了他們?nèi)掌骄邥r間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:

組號

分組

頻數(shù)

頻率

Ⅰ)求的值.

Ⅱ)若,補(bǔ)全表中數(shù)據(jù),并繪制頻率分布直方圖.

Ⅲ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計(jì)該校高一學(xué)生的日平均睡眠時間不少于小時的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:

月數(shù)

污染度

污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個函數(shù)模擬從整治后第一個月開始工廠的污染模式:,,其中表示月數(shù),、分別表示污染度.

1)問選用哪個函數(shù)模擬比較合理,并說明理由;

2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個月的污染度不超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的直線與圓相交于A,B兩點(diǎn).

1)若,求直線AB的方程;

2)設(shè)線段AB的中點(diǎn)為M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在,使得成立,則稱的不動點(diǎn),已知函數(shù)

1)當(dāng),時,求函數(shù)的不動點(diǎn);

2)若對任意實(shí)數(shù),函數(shù)恒有不動點(diǎn),求的取值范圍;

3)在(2)條件下,若圖象上的兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且的中點(diǎn)在直線上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題的真假:

1的必要條件;

2的充要條件;

3)兩個三角形的兩組對應(yīng)角相等是這兩個三角形相似的充要條件;

4)三角形的三條邊滿足勾股定理是這個三角形為直角三角形的充要條件;

5)在中,重心和垂心重合是為等邊三角形的必要條件;

6)如果點(diǎn)到點(diǎn)的距離相等,則點(diǎn)一定在線段的垂直平分線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,直線ly=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)BC上的不同于A的兩點(diǎn),且點(diǎn)BC關(guān)于原點(diǎn)對稱,直線AB,AC分別交直線l于點(diǎn)E,F.記直線的斜率分別為

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年級組織任課教師對這次考試進(jìn)行成績分析現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);

2)從成績大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冰桶挑戰(zhàn)賽是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外個人參與這項(xiàng)活動假設(shè)每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響

(1)若某參與者接受挑戰(zhàn)后,對其他個人發(fā)出邀請,則這個人中至少有個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機(jī)構(gòu)進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:

根據(jù)表中數(shù)據(jù),能否有%的把握認(rèn)為冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)

附:

查看答案和解析>>

同步練習(xí)冊答案