已知函數(shù)f(x)=
3x,              x∈[-1,1]
x2-6x+8,x∈(1,4]

(1)在圖中給定的直角坐標系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的最大值與最小值,及相應的自變量x值.
考點:函數(shù)的圖象,函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應用
分析:(1)描點,連線即可.
(2)由圖象可以直接觀察得到.
解答: 解:(1)描點,連線,如圖所示,如圖所示,
(2)由圖象可知,當x=1時有最大值3;當x=3時有最小值-1.
點評:本題主要考查了作圖和識圖的問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}對一切正整數(shù)n都有Sn=3an-2,其中Sn是{an}的前n項和,則a3=( 。
A、
9
2
B、-
9
2
C、-
9
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3+2x-x2
+lg(2x2+x-3),該函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡函數(shù)y=2cos2x+sin2x,并求當x取多少的時候函數(shù)取到最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有兩個函數(shù)f1(x)=loga(x-3a)與f2(x)=loga
1
x-a
,其中a>0,a≠1.
(1)求函數(shù)F(x)=f1(x)-f2(x)的表達式與定義域;
(2)給出如下定義:“對于在區(qū)間[m,n]上有意義的兩個函數(shù)f(x)與g(x),如果對任意x∈[m,n],有|f(x)-g(x)|≤1,則稱f(x)與g(x)在區(qū)間[m,n]上是接近的,否則稱f(x)與g(x)在區(qū)間[m,n]上是非接近的.”若0<a<1,試討論f1(x)與f2(x)在給定區(qū)間[a+2,a+3]上是否是接近的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-
2
3x+1

(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在其定義域上是增函數(shù);
(3)函數(shù)g(x)=x3•f(x),求證:g(x)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}前n項和為Sn且a2+a3=10,S6=42
(1)求{an}通項公式.
(2)設數(shù)列{bn}前n項和為Tn,且
1
bn
=a1+a2+…an,若Tn<m恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=19,a5+b3=9.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=anbn+
1
anan+1
,Sn為數(shù)列{cn}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1<x2,A(x1,y1),B(x2,y2)是曲線f(x)=mlnx+ax2+bx+c(ma<0)上兩點,直線AB的斜率為k.
(Ⅰ)試比較k與f′(
x1+x2
2
)的大小;
(Ⅱ)若存在實數(shù)x0∈(x1,x2),使得k=f′(x0),求證:x0
x1+x2
2

查看答案和解析>>

同步練習冊答案