【題目】已知橢圓:()的左右焦點(diǎn)分別為,,點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)點(diǎn)P,Q在橢圓上,O為坐標(biāo)原點(diǎn),且直線,的斜率之積為,求證:為定值;
(3)直線l過(guò)點(diǎn)且與橢圓交于A,B兩點(diǎn),問(wèn)在x軸上是否存在定點(diǎn)M,使得為常數(shù)?若存在,求出點(diǎn)M坐標(biāo)以及此常數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1); (2)20; (3),.
【解析】
(1)由點(diǎn)T在橢圓上且,可得,求得,點(diǎn)代入橢圓方程可求得b,從而得到橢圓的標(biāo)準(zhǔn)方程;(2) 設(shè)直線:,聯(lián)立方程組 ,求出,同理求出由此能證明為定值;(3) 當(dāng)直線l與x軸不垂直時(shí),設(shè)l:,由得,推出,當(dāng)l與x軸垂直時(shí),l:,,,從而.
(1)因?yàn)辄c(diǎn)T在橢圓上且,所以,;
將點(diǎn)代入橢圓得,解得,
∴橢圓的方程為.
(2)設(shè)直線:,聯(lián)立方程組,得,
所以,
又直線:,類(lèi)似的可得
故而,為定值;
(3)當(dāng)直線l與x軸不垂直時(shí),設(shè)l:,設(shè),,,
由得
又,
令得,此時(shí),
當(dāng)l與x軸垂直時(shí),l:,,,又,有,
綜上,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,真命題是( )
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、是異面直線,、是異面直線,則、是異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnxa,f′(x)是f(x)的導(dǎo)函數(shù),若關(guān)于x的方程f′(x)0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,O為線段AC上一點(diǎn),平面ADC⊥平面ABC,且△ADO,△ABO為等腰直角三角形,斜邊AO=4.
(Ⅰ)求證:AC⊥BD;
(Ⅱ)將△BDO繞DO旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,平面ABCD,底面ABCD是正方形,,E為PC上一點(diǎn),當(dāng)F為DC的中點(diǎn)時(shí),EF平行于平面PAD.
(Ⅰ)求證:平面PCB;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓,軸被曲線截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).
(1)求實(shí)數(shù)b的值;
(2)設(shè)C2與軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線與C2相交于點(diǎn)A、B,直線MA、MB分別與C1交于點(diǎn)D、E.
①證明:;
②記△MAB,△MDE的面積分別是若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,是邊長(zhǎng)為的正方形硬紙片(如圖1所示),切去陰影部分所示的四個(gè)全等的等腰三角形,再沿虛線折起,使得,,,四個(gè)點(diǎn)重合于圖2中的點(diǎn),正好形成一個(gè)正四棱錐形狀的包裝盒(如圖2所示),設(shè)正四棱錐的底面邊長(zhǎng)為.
(1)若要求包裝盒側(cè)面積不小于,求的取值范圍;
(2)若要求包裝盒容積最大,試問(wèn)應(yīng)取何值?并求出此時(shí)包裝盒的容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),下列說(shuō)法正確的是( )
(1)是的極小值點(diǎn);
(2)函數(shù)有且只有1個(gè)零點(diǎn);
(3)恒成立;
(4)設(shè)函數(shù),若存在區(qū)間,使在上的值域是,則.
A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的方程為,過(guò)拋物線上一點(diǎn)作斜率為的兩條直線分別交拋物線于兩點(diǎn)(三點(diǎn)互不相同),且滿足:
(1)求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)當(dāng)時(shí),若點(diǎn)的坐標(biāo)為,求為鈍角時(shí)點(diǎn)的縱坐標(biāo)的取值范圍;
(3)設(shè)直線上一點(diǎn),滿足,證明線段的中點(diǎn)在軸上;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com