【題目】已知向量,,,且 , ,分別為△的三邊所對(duì)的角.
(Ⅰ)求角的大;
(Ⅱ)若,,成等比數(shù)列,且,求邊C的值.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)首先寫出向量數(shù)量積的形式,然后利用兩角和的正弦公式化簡,以及二倍角公式,最后化簡為,得到角C的值;
(Ⅱ)根據(jù)條件可得,再利用正弦定理化簡為,化簡向量數(shù)量積得到,結(jié)合(Ⅰ)的結(jié)果,得到邊c的值.
試題解析:(Ⅰ) ∵ , ,
∴sinAcosB+cosAsinB=sin2C
即 sinC=sin2C
∴ cosC=
又C為三角形的內(nèi)角, ∴
(Ⅱ) ∵sinA,sinC,sinB成等比數(shù)列,
∴ sin2C=sinAsinB
∴ c2=ab
又,即
∴ abcosC=18 ………………10分
∴ ab=36 故 c2=36 ∴ c=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將編號(hào)為1,2,3,4,5的五個(gè)球放入編號(hào)為1,2,3,4,5的五個(gè)盒子里,每個(gè)盒子內(nèi)放一個(gè)球,若恰好有三個(gè)球的編號(hào)與盒子編號(hào)相同,則不同投放方法的種數(shù)為( )
A.6 B.10
C.20 D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,P是AB延長線上一點(diǎn),BP=2,割線PCD交圓O于點(diǎn)C,D,過點(diǎn)P作AP的垂線,交直線AC于點(diǎn)E,交直線AD于點(diǎn)F.
(1)當(dāng)時(shí),求的度數(shù);
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組,為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2月11日至2月16日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日期 | 2月11日 | 2月12日 | 2月13日 | 2月14日 | 2月15日 | 2月16日 |
平均氣溫x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
飲料銷量y(杯) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組的研究方案:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩天的概率;
(Ⅱ)若選取的是11日和16日的兩組數(shù)據(jù),請(qǐng)根據(jù)12日至15日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選的檢驗(yàn)數(shù)據(jù)的誤差均不超過2杯,則認(rèn)為該方程是理想的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中, ,,是的中點(diǎn),△是等腰三角形,為的中點(diǎn),為上一點(diǎn).
(1)若∥平面,求;
(2)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù),).
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)當(dāng)與有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(Ⅱ)經(jīng)過多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5—7分鐘,乙每次解答一道幾何題所用的時(shí)間在6—8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點(diǎn).
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE1∥平面FCC1;
(2)證明:平面D1AC⊥平面BB1C1C;
(3)求點(diǎn)D到平面D1AC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算法的三種基本結(jié)構(gòu)是
A. 順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
B. 順序結(jié)構(gòu)、流程結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
C. 順序結(jié)構(gòu)、分支結(jié)構(gòu)、流程結(jié)構(gòu)
D. 流程結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、分支結(jié)構(gòu)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com