【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C過點(diǎn)0,2,其焦點(diǎn)為F1,0,F(xiàn)2,0).

1求橢圓C的標(biāo)準(zhǔn)方程;

2已知點(diǎn)P在橢圓C上,且PF1=4,求△PF1F2的面積

【答案】124

【解析】

試題分析:1設(shè)橢圓方程為=1,a>b>0,由橢圓C過點(diǎn)0,2,其焦點(diǎn)為

F2,0,F(xiàn)2,0,求出a,b,c,由此能求出橢圓C的標(biāo)準(zhǔn)方程.(2由點(diǎn)P在橢圓C上,且PF1=4,求出PF2,|F1F2|,由此能求出△PF1F2的面積

試題解析:1∵橢圓C過點(diǎn)0,2,其焦點(diǎn)為F2,0,F(xiàn)2,0,

∴設(shè)橢圓方程為=1,a>b>0

,∴ =3,

∴橢圓C的標(biāo)準(zhǔn)方程為=1

2∵點(diǎn)P在橢圓C上,且PF1=4,∴PF2=2×3﹣4=2,∵F1,0,F(xiàn)2,0

∴|F1F2|=2,∴∴PF1⊥PF2

∴△PF1F2的面積S===4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為的正方形, 底面 分別為的中點(diǎn).

)求證: 平面;

)若,試問在線段上是否存在點(diǎn),使得二面角 的余弦值為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某一隨機(jī)變量ξ的概率分布列如圖所示,且E(ξ)=6.3,則a的值為(  )

ξ

4

a

9

P

0.5

0.1

b

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,那么互斥但不對立的兩

個(gè)事件是( )

A. 至少有1名男生與全是女生

B. 至少有1名男生與全是男生

C. 至少有1名男生與至少有1名女生

D. 恰有1名男生與恰有2名女生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報(bào)說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個(gè)隨機(jī)數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機(jī)模擬試驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為

A.0.35 B.0.25 C.0.20 D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的四個(gè)頂點(diǎn)分別為,左右焦點(diǎn)分別為,若圓上有且只有一個(gè)點(diǎn)滿足.

1求圓的半徑;

2若點(diǎn)為圓上的一個(gè)動點(diǎn),直線交橢圓于點(diǎn),交直線于點(diǎn),的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1若曲線在點(diǎn)處的切線方程為,求的值;

2求函數(shù)的單調(diào)區(qū)間;

3當(dāng)時(shí), ,使得成立, 則實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是大于的常數(shù).

1求函數(shù)的定義域;

2當(dāng)時(shí), 求函數(shù)上的最小值;

3若對任意恒有,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù) z=i(1+i)(其中 i 是虛數(shù)單位),則復(fù)數(shù) z 對應(yīng)的點(diǎn)位于(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案