已知圓的極坐標方程為ρ=2sinθ,若直線
x=4t+a
y=3t
,(t為參數(shù))與圓相切,則滿足條件的整數(shù)a的值為
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:把直線的參數(shù)方程、圓的極坐標方程化為直角坐標方程,根據(jù)根據(jù)圓心到直線的距離等于半徑,利用點到直線的距離公式求得整數(shù)a的值.
解答: 解:把圓的極坐標方程為ρ=2sinθ,化為直角坐標方程為 x2+(y-1)2=1,
表示以(0,1)為圓心、半徑等于1的圓.
把直線
x=4t+a
y=3t
,(t為參數(shù))消去參數(shù)化為普通方程為 3x-4y-3a=0,
根據(jù)圓心到直線的距離等于半徑可得
|0-4-3a|
9+16
=1,求得整數(shù)a=-3,
故答案為:-3.
點評:本題主要考查把參數(shù)方程、極坐標方程化為直角坐標方程的方法,點到直線的距離公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x-
x2-1
,求該函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標系(ρ,θ)(0≤θ<2π)中,點(1,0)關于直線2ρsinθ=1對稱的點的極坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,曲線C的離心率為
2
,且過點(1,
2
),則曲線C的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若F1,F(xiàn)2是雙曲線
x2
4
-y2=1的左,右焦點,點P是該雙曲線的頂點,則|PF1|-|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(π-α)=-
1
2
2
<α<2π,則sin(2π-α)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(1,0)到雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的一條漸近線的距離為
1
2
,則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某少數(shù)民族的刺繡有著悠久的歷史,如圖所示為她們刺繡最簡單的三個圖案,這些圖案都是由小圓構成,小圓數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小圓的擺放規(guī)律相同),設第n個圖形包含f(n)個小圓.則f(5)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果對x>0,y>0,有f(x,y)=(x+4y)(
2
x
+
1
2y
)≥m恒成立,那么實數(shù)m的取值范圍是( 。
A、(-∞,4]
B、(8,+∞)
C、(-∞,0)
D、(-∞,8]

查看答案和解析>>

同步練習冊答案