【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載的芻甍chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個(gè)芻甍,其中是正三角形,,則以下兩個(gè)結(jié)論:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

【答案】B

【解析】

利用線面平行的性質(zhì)及勾股定理即可判斷.

解:∵,CD在平面CDEF內(nèi),AB不在平面CDEF內(nèi),
平面CDEF,
EF在平面CDEF內(nèi),
AB在平面ABFE內(nèi),且平面平面,
EF,故①對(duì);
如圖,取CD中點(diǎn)G,連接BGFG,由ABCD2EF,易知GF,且DEGF,
不妨設(shè)EF1,則,


假設(shè)BFED,則,即,即FG1,但FG的長(zhǎng)度不定,故假設(shè)不一定成立,即②不一定成立.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是演繹推理的個(gè)數(shù)是( )

①兩條直線平行,同旁內(nèi)角互補(bǔ)。如果∠A與∠B是兩條平行直線的同旁內(nèi)角,那么∠A+∠B=180°;

②猜想數(shù)列1,3,5,7,9,11,…的通項(xiàng)公式為

③由正三角形的性質(zhì)得出正四面體的性質(zhì);

④半徑為的圓的面積,則單位圓的面積

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年被稱為”新高考元年”,隨著上海、浙江兩地順利實(shí)施“語(yǔ)數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國(guó)推進(jìn).遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué)的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為自已將來高考“語(yǔ)數(shù)外+3”新高考方案中的“3”.某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進(jìn)行了“學(xué)生模找擬選科數(shù)據(jù)”調(diào)查,每個(gè)學(xué)生只能從表格中的20種課程組合選擇一種學(xué)習(xí).模擬選課數(shù)據(jù)統(tǒng)計(jì)如下表 :

序號(hào)

1

2

3

4

5

6

7

組合學(xué)科

物化生

物化政

物化歷

物化地

物生政

物生歷

物生地

人數(shù)

20人

5人

10人

10人

10人

15人

10人

序號(hào)

8

9

10

11

12

13

14

組合學(xué)科

物證歷

物政地

物歷地

化生政

化生歷

化生地

化政歷

人數(shù)

5人

0人

5人

40人

序號(hào)

15

16

17

18

19

20

組合學(xué)科

化政地

化歷地

生政歷

生政地

生歷地

政歷地

總計(jì)

人數(shù)

200人

為了解學(xué)生成績(jī)與學(xué)生模擬選課情況之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進(jìn)行分析.

(1)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機(jī)抽取3人,求這3人中至少有2天要學(xué)習(xí)生物的概率;

(2)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機(jī)抽取3人,記這3人中要學(xué)習(xí)生物的人數(shù)為,要學(xué)習(xí)政治的人數(shù)為,設(shè)隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,面積為的平面凸四邊形的第條邊的邊長(zhǎng)記為,此四邊形內(nèi)任一點(diǎn)到第條邊的距離記為,若,則.類比以上性質(zhì),體積為的三棱錐的第個(gè)面的面積記為,此三棱錐內(nèi)任一點(diǎn)到第個(gè)面的距離記為,若,則等于( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),點(diǎn)是拋物線上一點(diǎn),且.

(1)求,的值;

(2)過點(diǎn)作兩條互相垂直的直線,與拋物線的另一交點(diǎn)分別是,.

①若直線的斜率為,求的方程;

的面積為12,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.

(1)求a,b的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家車輛制造廠引進(jìn)了一條摩托車整車裝配流水線,這條流水線生產(chǎn)的摩托車數(shù)量x(單位:輛)與創(chuàng)造的價(jià)值y(單位:元)之間有如下的關(guān)系:.若這家工廠希望在一個(gè)星期內(nèi)利用這條流水線創(chuàng)收60000元以上,則在一個(gè)星期內(nèi)大約應(yīng)該生產(chǎn)多少輛摩托車?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從5本不同的科普書和4本不同的數(shù)學(xué)書中選出4本,送給4位同學(xué),每人1本,問:

(1)如果科普書和數(shù)學(xué)書各選2本,共有多少種不同的送法?(各問用數(shù)字作答)

(2)如果科普書甲和數(shù)學(xué)書乙必須送出,共有多少種不同的送法?

(3)如果選出的4本書中至少有3本科普書,共有多少種不同的送法?

查看答案和解析>>

同步練習(xí)冊(cè)答案