【題目】2017年被稱為”新高考元年”,隨著上海、浙江兩地順利實施“語數(shù)外+3”新高考方案,新一輪的高考改革還將繼續(xù)在全國推進.遼寧地區(qū)也將于2020年開啟新高考模式,今年秋季入學(xué)的高一新生將面臨從物理、化學(xué)、生物、政治、歷史、地理等6科中任選三科(共20種選法)作為自已將來高考“語數(shù)外+3”新高考方案中的“3”.某地區(qū)為了順利迎接新高考改革,在某學(xué)校理科班的200名學(xué)生中進行了“學(xué)生模找擬選科數(shù)據(jù)”調(diào)查,每個學(xué)生只能從表格中的20種課程組合選擇一種學(xué)習(xí).模擬選課數(shù)據(jù)統(tǒng)計如下表 :

序號

1

2

3

4

5

6

7

組合學(xué)科

物化生

物化政

物化歷

物化地

物生政

物生歷

物生地

人數(shù)

20人

5人

10人

10人

10人

15人

10人

序號

8

9

10

11

12

13

14

組合學(xué)科

物證歷

物政地

物歷地

化生政

化生歷

化生地

化政歷

人數(shù)

5人

0人

5人

40人

序號

15

16

17

18

19

20

組合學(xué)科

化政地

化歷地

生政歷

生政地

生歷地

政歷地

總計

人數(shù)

200人

為了解學(xué)生成績與學(xué)生模擬選課情況之間的關(guān)系,用分層抽樣的方法從這200名學(xué)生中抽取40人的樣本進行分析.

(1)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機抽取3人,求這3人中至少有2天要學(xué)習(xí)生物的概率;

(2)從選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生中隨機抽取3人,記這3人中要學(xué)習(xí)生物的人數(shù)為,要學(xué)習(xí)政治的人數(shù)為,設(shè)隨機變量,求隨機變量的分布列和數(shù)學(xué)期望.

【答案】(1);(2)答案見解析.

【解析】試題分析:(1)分別計算2人選生物和三人選生物的選法,由加法原理可得共34種,從而計算出其概率;(2)物化生組合有4人,的可能取值為0,1,2,3,物化政組合1人,的可能取值為0,1,的可能取值為-1,0,1,2,3.根據(jù)古典概型,分別求其概率即可得出分布列及期望.

試題解析:

(1)選擇學(xué)習(xí)物理且學(xué)習(xí)化學(xué)的學(xué)生有9人,其中學(xué)習(xí)生物的有4人從9人中選3人共有種選法,有2人選擇生物的選法共有種,有3人選擇生物的選法有種,所以至少有2人選擇生物的概率為.

(2)物化生組合有4人,的可能取值為0,1,2,3,物化政組合1人,的可能取值為0,1,的可能取值為-1,0,1,2,3.

;

;

,

的分布列

-1

0

1

2

3

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且(),.

(1)求證:是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

)求直線的普通方程與曲線C的直角坐標(biāo)方程;

)若直線軸的交點為P,直線與曲線C的交點為A,B,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,錯誤的是( )

A. 若命題,,則命題,

B. ”是“”的必要不充分條件

C. “若,則中至少有一個不小于”的逆否命題是真命題

D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標(biāo)原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4[3+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載的芻甍chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍,其中是正三角形,,則以下兩個結(jié)論:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,頂點到直線的距離為,橢圓內(nèi)接四邊形(點在橢圓上)的對角線相交于點,且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDCAEDC,M,N分別是ADBE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

同步練習(xí)冊答案