【題目】如圖所示,面積為的平面凸四邊形的第條邊的邊長記為,此四邊形內(nèi)任一點(diǎn)到第條邊的距離記為,若,則.類比以上性質(zhì),體積為的三棱錐的第個面的面積記為,此三棱錐內(nèi)任一點(diǎn)到第個面的距離記為,若,則等于( 。
A. B. C. D.
【答案】D
【解析】
平面凸四邊形中的結(jié)論是根據(jù)等面積法得到,類比以上性質(zhì),在三棱錐中根據(jù)等體積法求解的值.
解:面積為的平面凸四邊形的第條邊的邊長記為,
此四邊形內(nèi)任一點(diǎn)到第條邊的距離記為,
所以由等面積法得,,
因?yàn)?/span>,
,
所以,
即,
故在平面凸四邊形中,求解此結(jié)論的過程中運(yùn)用了等面積法求解,
類比上述性質(zhì),在三棱錐中,則應(yīng)使用等體積法求解,
三棱錐的體積為,
因?yàn)轶w積為的三棱錐的第個面的面積記為,此三棱錐內(nèi)任一點(diǎn)到第個面的距離記為,
由等體積法有,,
,
因?yàn)?/span>,
所以,
所以,
即,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn)。
(1)證明:;
(2)若為上的動點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求的方程;
(2)是否存在直線與相交于兩點(diǎn),且滿足:①與(為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角中,若,且能蓋住的最小圓的面積為,求周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載的“芻甍”(chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍,其中是正三角形,,則以下兩個結(jié)論:①;②,( )
A.①和②都不成立B.①成立,但②不成立
C.①不成立,但②成立D.①和②都成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為鈍角α的角形耕地,其中.在該塊土地中處有一小型建筑,經(jīng)測量,它到公路、的距離、分別為,.現(xiàn)要過點(diǎn)修建一條直線公路,將三條公路圍成的區(qū)域建成一個工業(yè)園.設(shè),,其中.
(1)試建立間的等量關(guān)系;
(2)為盡量減少耕地占用,問如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰梯形中,,是的中點(diǎn).將沿折起后如圖2,使二面角成直二面角,設(shè)是的中點(diǎn),是棱的中
點(diǎn).
(1)求證:;
(2)求證:平面平面;
(3)判斷能否垂直于平面,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y與投資x成正比,其關(guān)系如圖甲,B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,其關(guān)系如圖乙注:利潤與投資單位為萬元
分別將A,B兩種產(chǎn)品的利潤y表示為投資x的函數(shù)關(guān)系式;
該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn)問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com