【題目】如圖,在四棱柱中,平面,底面是矩形,,,,為棱的中點.
(1)求直線與平面所成角的正弦值;
(2)求二面角的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的導(dǎo)數(shù)為,,
(1)若不等式對任意恒成立,求實數(shù)的取值范圍.
(2)若在上有且只有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在處的切線為.
(Ⅰ)求實數(shù),的值;
(Ⅱ)若不等式對任意恒成立,求的取值范圍;
(Ⅲ)設(shè)其中,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知項數(shù)為的數(shù)列滿足條件:①;②;若數(shù)列滿足,則稱為數(shù)列的“關(guān)聯(lián)數(shù)列.
(1)數(shù)列1,5,9,13,17是否存在“關(guān)聯(lián)數(shù)列”?若存在,寫出其“關(guān)聯(lián)數(shù)列”,若不存在,請說明理由;
(2)若數(shù)列存在“關(guān)聯(lián)數(shù)列”,證明:;
(3)已知數(shù)列存在“關(guān)聯(lián)數(shù)列”,且,,求數(shù)列項數(shù)m的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形,,,,圓臺的側(cè)面積為.若點C,D分別為圓,上的動點且點C,D在平面的同側(cè).
(1)求證:;
(2)若,則當三棱錐的體積取最大值時,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是軸上的動點(異于原點),點在圓上,且.設(shè)線段的中點為,當點移動時,記點的軌跡為曲線.
(1)求曲線的方程;
(2)當直線與圓相切于點,且點在第一象限.
(ⅰ)求直線的斜率;
(ⅱ)直線平行,交曲線于不同的兩點、.線段的中點為,直線與曲線交于兩點、,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com