以橢圓+=1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的雙曲線方程為( )
A.-x2=1 B.x2-=1
C.-=1 D.-=1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
某花店每天以每枝元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝,)的函數(shù)解析式;
(Ⅱ)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
頻數(shù) |
|
|
|
|
|
|
|
① 假設(shè)花店在這天內(nèi)每天購進(jìn)枝玫瑰花,求這天的日利潤(單位:元)的平均數(shù);
② 若花店一天購進(jìn)枝玫瑰花,以天記錄的的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(單位:元)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知兩條直線l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.當(dāng)m分別為何值時,l1與l2:
(1)相交?(2)平行?(3)垂直?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓+=1(a>b>0)的離心率為,且點(diǎn)在橢圓上,則以橢圓的左、右焦點(diǎn)及短軸上的兩個頂點(diǎn)為頂點(diǎn)的四邊形的周長為( )
A.22 B.24 C.20 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C的中心在原點(diǎn),長軸在x軸上,經(jīng)過點(diǎn)A(0,1),離心率e=.
(1)求橢圓C的方程;
(2)設(shè)直線ln:y= (n∈N*)與橢圓C在第一象限內(nèi)相交于點(diǎn)An(xn,yn),記an=x,試證明:對∀n∈N*,a1·a2·…·an>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知p:“x2+y2+2x=F為一圓的方程(F∈R)”,q:“F>0”,則p是q的( )
A.充要條件 B.充分不必要條件
C.必要不充分條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
點(diǎn)M(2,-3,1)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是( )
A.(-2,3,-1) B.(-2,-3,-1)
C.(2,-3,-1) D.(-2,3,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動,若=2,則點(diǎn)C的軌跡是( )
A.線段 B.圓
C.橢圓 D.雙曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com