【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類菠菜.根據(jù)統(tǒng)計(jì),該基地的西紅種增加量y(百斤)與使用某種液體肥料x(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖.依據(jù)折線圖及其提供的數(shù)據(jù),是否可用線性回歸模型擬合yx的關(guān)系?如果可以,請(qǐng)計(jì)算相關(guān)系數(shù)r并加以說明(精確到0.01),(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,

【答案】可用線性回歸摸型擬合yx的關(guān)系,

【解析】

由由題意求出,代入公式求值,從而得到回歸直線方程.

如圖、連結(jié)其中兩點(diǎn)得一直線可以知道相關(guān)數(shù)據(jù)對(duì)應(yīng)的點(diǎn)在直線附近.所以可用線性回歸模型擬合yx的關(guān)系,

由已知數(shù)據(jù)可得

因?yàn)?/span>,

,

所以相關(guān)系數(shù)

因?yàn)?/span>,所以可用線性回歸摸型擬合yx的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地?cái)M在一個(gè)U形水面PABQ(∠A=B=90°)上修一條堤壩(EAP上,NBQ上),圍出一個(gè)封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點(diǎn)M處分別向點(diǎn)E,N2條分隔線ME,MN,將所圍區(qū)域分成3個(gè)部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長(zhǎng)度為l

1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達(dá)式,并寫出定義域;

2)求l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.

(1)求的通項(xiàng)公式;

(2)求Sn,并判斷Sn+1,SnSn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,,EAB的中點(diǎn)將沿直線DE折起到的位置,使平面平面BCDE

1)證明:平面PDE

2)設(shè)F為線段PC的中點(diǎn),求四面體D-PEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),是函數(shù)圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),時(shí),的最小值為

1)求函數(shù)的解析式;

2)若方程內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,,若的單調(diào)區(qū)間;

2)當(dāng)時(shí),若存在唯一的零點(diǎn),且,其中,求.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,平面是線段上的動(dòng)點(diǎn),是線段上的中點(diǎn).

(Ⅰ)證明:;

(Ⅱ)若,且直線所成角的余弦值為,試指出點(diǎn)在線段上的位置,并求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案