【題目】函數(shù), (m常數(shù))

1求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1) ,, , 三種情況討論的單調(diào)區(qū)間.

II, , 三種情況討論的單調(diào)性,根據(jù)函數(shù)有零點(diǎn),確定的取值范圍.

試題解析:(1)題意知: ,則

,

①當(dāng)時(shí),令,有;令,有.故函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

②當(dāng)時(shí),令,有;令,有.故函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

③當(dāng)時(shí),令,有;令,有.故函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(II)①當(dāng)時(shí),由可得,有,故滿(mǎn)足題意.

②當(dāng)時(shí),若,即時(shí),由(I)知函數(shù)上遞增,在上遞減.

,令,有

,即時(shí),由(I)知函數(shù)上遞增.而,令,解得,而,故

③當(dāng)時(shí),由(I)知函數(shù)上遞增,由,令,解得,而,故

綜上所述, 的取值范圍是:

另,題目可轉(zhuǎn)化為函數(shù)與函數(shù)的圖像有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓C:的左右焦點(diǎn)分別為,,直線(xiàn)l:與橢圓C交于A(yíng),B兩點(diǎn)為坐標(biāo)原點(diǎn).

若直線(xiàn)l過(guò)點(diǎn),且,求直線(xiàn)l的方程;

若以AB為直徑的圓過(guò)點(diǎn)O,點(diǎn)P是線(xiàn)段AB上的點(diǎn),滿(mǎn)足,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(﹣2,0),(2,0),且AC,BC所在直線(xiàn)的斜率之積等于

(1)求頂點(diǎn)C的軌跡方程;

(2)若斜率為1的直線(xiàn)與頂點(diǎn)C的軌跡交于M,N兩點(diǎn),且|MN|=,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:

(Ⅰ)1~6號(hào)舊井位置線(xiàn)性分布,借助前5組數(shù)據(jù)求得回歸直線(xiàn)方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱(chēng)為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水利部門(mén)擬在黃河沿岸修建一所水庫(kù),為大致了解甲、乙兩地的降水情況,隨機(jī)選取汛期月份中的一周,將這一周內(nèi)每日的降水量數(shù)據(jù)進(jìn)行統(tǒng)計(jì)(單位:),制成如圖所示的莖葉圖.考慮以下結(jié)論:

①甲地本周的平均降水量低于乙地本周的平均降水量;

②甲地本周的中位降水量高于乙地本周的平均降水量;

③甲地本周的降水量眾數(shù)大于乙地本周的降水量的中位數(shù);

④甲地本周降水量的標(biāo)準(zhǔn)差大于乙地本周降水量的標(biāo)準(zhǔn)差.

其中根據(jù)莖葉圖能得到的不恰當(dāng)?shù)慕y(tǒng)計(jì)結(jié)論的編號(hào)為(

A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,其形成是海水受日月的引力.潮是指海水在一定的時(shí)候發(fā)生漲落的現(xiàn)象.一般來(lái)說(shuō),早潮叫潮,晚潮叫汐.某觀(guān)測(cè)站通過(guò)長(zhǎng)時(shí)間的觀(guān)測(cè),其發(fā)現(xiàn)潮汐的漲落規(guī)律和函數(shù)圖象基本一致且周期為,其中為時(shí)間,為水深.當(dāng)時(shí),海水上漲至最高5.

1)作出函數(shù)內(nèi)的圖象,并求出潮汐漲落的頻率和初相;

2)求海水水深持續(xù)加大的時(shí)間區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,,求的單調(diào)遞減的概率;

2)當(dāng),且為整數(shù)時(shí),求二次函數(shù)有兩個(gè)零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線(xiàn)與曲線(xiàn)在它們的某個(gè)交點(diǎn)處具有公共切線(xiàn),求的值;

(Ⅱ)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍

(Ⅲ)若方程有三個(gè)不同的解,且它們可以構(gòu)成等差數(shù)列,寫(xiě)出實(shí)數(shù)的值(只需寫(xiě)出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面中兩條直線(xiàn)ln相交于O,對(duì)于平面上任意一點(diǎn)M,若pq分別是M到直線(xiàn)ln的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.則下列說(shuō)法正確的(

A.p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有一個(gè)

B.pq=0,且p+q0,則“距離坐標(biāo)”為(pq)的點(diǎn)有且僅有2個(gè)

C.pq0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè)

D.p=q,則點(diǎn)M的軌跡是一條過(guò)O點(diǎn)的直線(xiàn)

查看答案和解析>>

同步練習(xí)冊(cè)答案