【題目】在三棱柱中, 平面, , , ,點在棱上,且.建立如圖所示的空間直角坐標(biāo)系.

(1)當(dāng)時,求異面直線的夾角的余弦值;

(2)若二面角的平面角為,求的值.

【答案】(1). (2)

【解析】試題分析:

(1)結(jié)合題中的空間直角坐標(biāo)系計算可得異面直線的夾角的余弦值為.

(2)二面角的平面角為,則平面的法向量,據(jù)此列方程可解得的值為

試題解析:

(1)易知, ,

因為, ,所以,當(dāng)時,

所以

所以,

故異面直線的夾角的余弦值為

(2)由可知, ,所以,

由(1)知,

設(shè)平面的法向量為,

,解得, ,

所以平面的一個法向量為

設(shè)平面的法向量為

,解得, ,

所以平面的一個法向量為

因為二面角的平面角為,

所以,

,解得(舍),

的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cosxsin(x+ )﹣
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對的邊為a,b,c,f( )= ,B= ,a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為加強(qiáng)學(xué)生的交通安全教育,對學(xué)校旁邊,兩個路口進(jìn)行了8天的檢測調(diào)查,得到每天各路口不按交通規(guī)則過馬路的學(xué)生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.

(1)求出路口8個數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;

(2)在路口的數(shù)據(jù)中任取大于35的2個數(shù)據(jù),求所抽取的兩個數(shù)據(jù)中至少有一個不小于40的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知△ABC的面積為3 ,b﹣c=2,cosA=﹣
(1)求a和sinC的值;
(2)求cos(2A+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的不等式x2+2ax+4>0,對一切x∈R恒成立,q:函數(shù)f(x)=(3﹣2a)x是增函數(shù),若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(
A.已知實數(shù)a,b,則“a>b”是“a2>b2”的必要不充分條件
B.“存在x0∈R,使得 ”的否定是“對任意x∈R,均有x2﹣1>0”
C.函數(shù) 的零點在區(qū)間 內(nèi)
D.設(shè)m,n是兩條直線,α,β是空間中兩個平面,若m?α,n?β,m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是矩形,平面 平面,且是邊長為的等邊三角形, ,點的中點.

(1)求證: 平面 ;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是菱形,∠BAD=60°,側(cè)面SAB⊥底面ABCD,并且SA=SB=AB=2,F(xiàn)為SD的中點.
(1)求三棱錐S﹣FAC的體積;
(2)求直線BD與平面FAC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案