【題目】已知函數(shù)
(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間[-2,4]上的最大值;
(2)當(dāng)時,若在區(qū)間(-1,1)上不單調(diào),求的取值范圍.
【答案】.解:(Ⅰ)…………………………………………1分
………………………………2分
∴a=0或2. ………………………………………………………………………4分
(Ⅱ)∵(1,f(1))是切點(diǎn),∴1+f(1)-3=0, ∴f(1)=2…………………5分
∵切線方程x+y-3=0的斜率為-1,
……………………………7分
…………8分……………………………………9分
∴y=f(x)在區(qū)間[-2,4]上的最大值為8. …………………………………………10分
(Ⅲ)因為函數(shù)f(x)在區(qū)間(-1,1)不單調(diào),所以函數(shù)在(-1,1)上存在零點(diǎn).
而=0的兩根為a-1,a+1,區(qū)間長為2,
∴在區(qū)間(-1,1)上不可能有2個零點(diǎn). ……………………………11分
………………………………12分
……………………………………………14分
【解析】
(1)先利用的圖象在點(diǎn)處的切線方程為求出,再求函數(shù)在區(qū)間上的最大值.(2)由題得得或,再解不等式 或 得解.
(1)由已知得 , ,
, ,
令, 得或2,
又 , ,
.
(2)得或,
若在上不單調(diào),則在上有解,
或 ,
或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: (為參數(shù))
(1)求圓和直線的極坐標(biāo)方程;
(2)點(diǎn) 的極坐標(biāo)為,直線與圓相較于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形中,已知分別為和的中點(diǎn),對角線與交于點(diǎn),沿把矩形折起,使兩個半平面所成二面角為60°,如圖(2).
(1)求證:;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射擊手在同一條件下進(jìn)行射擊訓(xùn)練,結(jié)果如下:
射擊次數(shù)n | 10 | 20 | 50 | 100 | 200 | 500 |
擊中靶心次數(shù)m | 8 | 19 | 44 | 92 | 178 | 455 |
擊中靶心頻率 |
(1)求出表中擊中靶心的各個頻率值;
(2)這個射擊手射擊一次,擊中靶心的概率可估計為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對象,他們從大學(xué)畢業(yè),沒有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國際花園城市”稱號的溫江幸福田園,就有一個由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營模式,引來無數(shù)人的關(guān)注,帶來紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬元,經(jīng)營后每年的總收入為50萬元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項為12,公差為4的等差數(shù)列(單位:萬元).
(1)求;
(2)該農(nóng)家樂第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)
(3)該農(nóng)家樂經(jīng)營多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前年總獲利)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)拋物線的開口向 、對稱軸為直線 、頂點(diǎn)坐標(biāo) ;
(2)當(dāng) 時,函數(shù)有最 值,是 ;
(3)當(dāng) 時,隨的增大而增大;當(dāng) 時,隨的增大而減。
(4)該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移得到的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的分類垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計廚余垃圾投放正確的概率P;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設(shè)廚余垃圾在“廚余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分別為a、b、c,其中a>0,a+b+c=600. 當(dāng)數(shù)據(jù)a、b、c的方差s2最大時,寫出a、b、c的值(結(jié)論不要求證明),并求出此時s2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),定義域為[a-1,2a],則a=________,b=________;
(2)已知函數(shù)f(x)=ax2+2x是奇函數(shù),則實(shí)數(shù)a=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com