9.設(shè)${({1-2x})^5}={a_0}+2{a_1}x+4{a_2}{x^2}+8{a_3}{x^3}+16{a_4}{x^4}+32{a_5}{x^5}$,則a1+a2+a3+a4+a5=-1.

分析 令x=0,可得:1=a0.令x=$\frac{1}{2}$,則$(1-2×\frac{1}{2})^{5}$=a0+a1+a2+a3+a4+a5,即可得出.

解答 解:令x=0,可得:1=a0
令x=$\frac{1}{2}$,則$(1-2×\frac{1}{2})^{5}$=${a}_{0}+2{a}_{1}×\frac{1}{2}$+$4{a}_{2}×(\frac{1}{2})^{2}$+…+$32{a}_{5}×(\frac{1}{2})^{5}$=a0+a1+a2+a3+a4+a5,
∴a1+a2+a3+a4+a5=-a0=-1.
故答案為:-1.

點評 本題考查了二項式定理的應用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0.b>0)的離心率為$\sqrt{3}$,虛軸端點與焦點的距離為$\sqrt{5}$.
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知命題p:不等式ax2+ax+1>0的解集為R,則實數(shù)a∈(0,4);命題q“x2-2x-8>0”是“x>5”的必要不充分條件,則下列命題正確的是( 。
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,M、N分別是四面體OABC的棱AB與OC的中點,已知向量$\overrightarrow{MN}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則xyz=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.等差數(shù)列{an}中,a3+a4=12,S7=49.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.令bn=[lgan],求數(shù)列{bn}的前2000項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=x3-2x,則f(3)=( 。
A.1B.19C.21D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知球的直徑為4,則該球的表面積積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在如圖所示的幾何體中,A1B1C1-ABC是直三棱柱,四邊形ABDC是梯形,AB∥CD,且$AB=BD=\frac{1}{2}CD=2$,∠BDC=60°,E是C1D的中點.
(Ⅰ)求證:AE∥平面BB1D;
(Ⅱ)當AE與平面ABCD所成角的正切值為$\frac{1}{2}$時,求該幾何體的體積.

查看答案和解析>>

同步練習冊答案