分析 不等式轉(zhuǎn)化為$\frac{lnx}{lna}$<(lnx)2+4,令t=lnx,得到$\frac{t}{lna}$<t2+4在t∈(0,ln100)恒成立,通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:∵不等式logax-ln2x<4,
∴$\frac{lnx}{lna}$<(lnx)2+4,
令t=lnx,
∵x∈(1,100),∴t=lnx∈(0,ln100),
∴$\frac{t}{lna}$<t2+4在t∈(0,ln100)恒成立,
0<a<1時(shí),lna<0,顯然成立,
a>1時(shí),lna>0,
故lna>$\frac{t}{{t}^{2}+4}$,
令g(t)=$\frac{t}{{t}^{2}+4}$,t∈(0,ln100),
則g′(t)=$\frac{{-t}^{2}+4}{{{(t}^{2}+4)}^{2}}$,
令g′(t)>0,解得:0<t<2,
令g′(t)<0,解得:t>2,
故g(t)在(0,2)遞增,在(2,+∞)遞減,
故g(t)≤g(2)=$\frac{1}{4}$,
故lna>$\frac{1}{4}$,解得:a>${e}^{\frac{1}{4}}$,
綜上,a∈(0,1)∪(${e}^{\frac{1}{4}}$,+∞),
故答案為:(0,1)∪(${e}^{\frac{1}{4}}$,+∞).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$ | B. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$ | C. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$ | D. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\sqrt{{{(x-1)}^2}},g(x)=x-1$ | B. | f(x)=x0,g(x)=1 | ||
C. | $f(x)={3^x},g(x)={(\frac{1}{3})^{-x}}$ | D. | $f(x)=x-1,g(x)=\frac{{{x^2}-1}}{x+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com