【題目】已知函數(shù)f(x)=|2x﹣a|+|x﹣a+1|.
(1)當(dāng)a=4時(shí),求解不等式f(x)≥8;
(2)已知關(guān)于x的不等式f(x)在R上恒成立,求參數(shù)a的取值范圍.
【答案】(1)[5,+∞)∪(∞,];(2)[﹣2,1].
【解析】
(1)根據(jù)a=4時(shí),有f(x)=|2x﹣4|+|x﹣3|,然后利用絕對(duì)值的幾何意義,去絕對(duì)值求解.
(2)根據(jù)絕對(duì)值的零點(diǎn)有a﹣1和,分a﹣1,a﹣1和a﹣1時(shí)三種情況分類討論求解.
(1)當(dāng)a=4時(shí),f(x)=|2x﹣4|+|x﹣3|,
(i)當(dāng)x≥3時(shí),原不等式可化為3x﹣7≥8,解可得x≥5,
此時(shí)不等式的解集[5,+∞);
(ii)當(dāng)2<x<3時(shí),原不等式可化為2x﹣4+3﹣x≥8,解可得x≥9
此時(shí)不等式的解集;
(iii)當(dāng)x≤2時(shí),原不等式可化為﹣3x+7≥8,解可得x,
此時(shí)不等式的解集(∞,],
綜上可得,不等式的解集[5,+∞)∪(∞,],
(2)(i)當(dāng)a﹣1即a=2時(shí),f(x)=3|x﹣1|2顯然不恒成立,
(ii)當(dāng)a﹣1即a>2時(shí),,
結(jié)合函數(shù)的單調(diào)性可知,當(dāng)x時(shí),函數(shù)取得最小值f(),
若f(x)在R上恒成立,則,此時(shí)a不存在,
(iii)當(dāng)a﹣1即a<2時(shí),f(x)
若f(x)在R上恒成立,則1,
解得﹣2≤a≤1,
此時(shí)a的范圍[﹣2,1],
綜上可得,a的范圍圍[﹣2,1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解中學(xué)生的課外閱讀時(shí)間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對(duì)他們的課外閱讀時(shí)間進(jìn)行問(wèn)卷調(diào)查.現(xiàn)在按課外閱讀時(shí)間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時(shí)間不超過(guò)3小時(shí)),類(參加課外閱讀,且平均每周參加課外閱讀的時(shí)間超過(guò)3小時(shí)).調(diào)查結(jié)果如下表:
類 | 類 | 類 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中,的值;
(2)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計(jì) | ||
不參加課外閱讀 | ||||
參加課外閱讀 | ||||
總計(jì) |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,且與的圖象有一個(gè)斜率為1的公切線(為自然對(duì)數(shù)的底數(shù)).
(1)求;
(2)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,P,Q,L分別為棱A1D1,C1D1,BC的中點(diǎn).
(1)求證:AC⊥QL;
(2)求四面體DPQL的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月以來(lái),湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國(guó)范圍內(nèi)開(kāi)始傳播,專家組認(rèn)為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過(guò)與患者的密切接觸進(jìn)行傳染.我們把與患者有過(guò)密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個(gè)患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.
(1)求一天內(nèi)被感染人數(shù)為的概率與、的關(guān)系式和的數(shù)學(xué)期望;
(2)該病毒在進(jìn)入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無(wú)任何癥狀,為病毒傳播的最佳時(shí)間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.
(i)求數(shù)列的通項(xiàng)公式,并證明數(shù)列為等比數(shù)列;
(ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時(shí),計(jì)算此時(shí)所對(duì)應(yīng)的值和此時(shí)對(duì)應(yīng)的值,根據(jù)計(jì)算結(jié)果說(shuō)明戴口罩的必要性.(取)
(結(jié)果保留整數(shù),參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面是直角梯形,,,為的中點(diǎn),.
(1)證明:平面平面;
(2)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段 的延長(zhǎng)線上,且滿足,點(diǎn)的軌跡為.
(1)求曲線,的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是圓柱底面圓O的直徑,底面半徑,圓柱的表面積為,點(diǎn)在底面圓上,且直線與下底面所成的角的大小為.
(1)求的長(zhǎng);
(2)求二面角的大小的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com