【題目】已知,.
(1)當(dāng)時(shí),證明:;
(2)已知點(diǎn),點(diǎn),O為坐標(biāo)原點(diǎn),函數(shù),請(qǐng)判斷:當(dāng)時(shí)的零點(diǎn)個(gè)數(shù).
【答案】(1)見(jiàn)解析(2)在上零點(diǎn)個(gè)數(shù)為2.
【解析】
(1)不等式等價(jià),設(shè),計(jì)算其導(dǎo)函數(shù)的最值得到函數(shù)的單調(diào)區(qū)間,計(jì)算最值得到答案.
(2)計(jì)算得到函數(shù)表達(dá)式,求導(dǎo),討論,,,四種情況,根據(jù)函數(shù)單調(diào)性分別計(jì)算零點(diǎn)得到答案.
(1)等價(jià)于證明.
令,則.
令,則,
由,得;由,得,
∴在遞減,在遞增,
∴,
∴在上恒成立.
∵在遞減,在遞增,∴,∴.
(2)點(diǎn),點(diǎn),,
∴.
①當(dāng)時(shí),可知,即,又,,
∴,在單調(diào)遞減.又∵,.
∴在上有一個(gè)零點(diǎn).
②當(dāng)時(shí),設(shè),則,函數(shù)單調(diào)遞增,
故,故,,
∴,∴恒成立,
∴在上無(wú)零點(diǎn).
③當(dāng)時(shí),∵,
∴,∴在上單調(diào)遞增.
又∵,,
∴在上存在一個(gè)零點(diǎn).
④當(dāng),∵,,∴恒成立,
∴在無(wú)零點(diǎn).
綜上,在上零點(diǎn)個(gè)數(shù)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1,E,F分別是棱CC1,AB的中點(diǎn).
(1)證明:CF∥平面AEB1.
(2)若AC=BC=AA1=4,∠ACB=90°,求三棱錐B1﹣ECF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè).若正實(shí)數(shù),滿足,,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的導(dǎo)數(shù)為,,
(1)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
(2)若在上有且只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列:,,,,,..,,,,,,,…的前n項(xiàng)和為,正整數(shù),滿足:①,②是滿足不等式的最小正整數(shù),則( )
A.6182B.6183C.6184D.6185
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在處的切線為.
(Ⅰ)求實(shí)數(shù),的值;
(Ⅱ)若不等式對(duì)任意恒成立,求的取值范圍;
(Ⅲ)設(shè)其中,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”; 乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐,是等邊三角形,,,,,是的中點(diǎn).
(Ⅰ)證明:直線平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com