【題目】設(shè)函數(shù).
(1)若時(shí),取得極值,求的值;
(2)若在其定義域內(nèi)為增函數(shù),求的取值范圍.
【答案】(1) ;(2).
【解析】
試題(1)先求函數(shù)的導(dǎo)函數(shù),根據(jù)若時(shí),取得極值得,解之即可;(2)在其定義域內(nèi)為增函數(shù)可轉(zhuǎn)化成只需在內(nèi)有恒成立,根據(jù)二次函數(shù)的圖象與性質(zhì)建立不等式關(guān)系,解之即可.
試題解析:
(1)因?yàn)?/span>時(shí),取得極值,所以,
即 故.
(2)的定義域?yàn)?/span>.方程的判別式,
(Ⅰ) 當(dāng), 即時(shí),,
在內(nèi)恒成立, 此時(shí)為增函數(shù).
(Ⅱ)當(dāng), 即或時(shí),
要使在定義域內(nèi)為增函數(shù), 只需在內(nèi)有即可,
設(shè),
由 得 , 所以.
由(1) (2)可知,若在其定義域內(nèi)為增函數(shù),的取值范圍是.
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及利用單調(diào)性求參數(shù)的范圍,屬于中檔題. 利用單調(diào)性求參數(shù)的范圍的常見(jiàn)方法:① 視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的; ② 利用導(dǎo)數(shù)轉(zhuǎn)化為不等式或恒成立問(wèn)題求參數(shù)范圍,本題(2)是利用方法 ② 求解的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定函數(shù)①;②;③;④,其中在區(qū)間上單調(diào)遞減的函數(shù)序號(hào)是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·開(kāi)封一模]已知數(shù)列中,,,利用下面程序框圖計(jì)算該數(shù)列的項(xiàng)時(shí),若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某大學(xué)學(xué)生在某天上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查. 得到如下的統(tǒng)計(jì)結(jié)果.
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表:
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) | 10 | 20 | 40 | 20 | 10 |
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表:
上網(wǎng)時(shí)間(分鐘) | |||||
人數(shù) | 5 | 25 | 30 | 25 | 15 |
完成下面的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用水清洗一份蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù).
(1)求的值,并解釋其實(shí)際意義;
(2)現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問(wèn)用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知五邊形ABECD由一個(gè)直角梯形和一個(gè)等邊三角形構(gòu)成(如圖1所示),且.將梯形沿著折起(如圖2所示),點(diǎn)是的中點(diǎn),平面
(1)求證:;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)的零點(diǎn),.
(1)求實(shí)數(shù)的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(3ωx),其中ω>0.
(1)若f(x+θ)是最小周期為2π的偶函數(shù),求ω和θ的值;
(2)若f(x)在(0,]上是增函數(shù),求ω的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)?/span>[0,1])的函數(shù)f(x),如果同時(shí)滿(mǎn)足以下三條:①對(duì)任意的x∈[0,1],總有f(x)≥0;②f (1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱(chēng)函數(shù)f(x)為理想函數(shù).
(1)判斷函數(shù)g(x)=2x﹣1(x∈[0,1])是否為理想函數(shù),并予以證明;
(2)若函數(shù)f(x)為理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證f(x0)=x0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com