13.已知x>0,y>0,且x+y=2xy,則x+4y的最小值為( 。
A.4B.$\frac{7}{2}$C.$\frac{9}{2}$D.5

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:x>0,y>0,x+y=2xy,
則:$\frac{1}{2y}+\frac{1}{2x}=1$,
那么:(x+4y)×$(\frac{1}{2y}+\frac{1}{2x})$=$\frac{1}{2}+2+\frac{x}{2y}+\frac{2y}{x}$≥$\frac{5}{2}+2\sqrt{\frac{x}{2y}×\frac{2y}{x}}=\frac{9}{2}$,當(dāng)且僅當(dāng)x=2y=$\frac{3}{2}$時取等號.
∴x+4y的最小值為$\frac{9}{2}$,
故選C.

點評 本題考查了“乘1法”與基本不等式的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x2-2ax+a+2在區(qū)間[0,a]上的最大值為3,最小值為2,則a的值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式x2+x+a+1≥0對一切$x∈[{0,\frac{1}{2}}]$都成立,則a的最小值為(  )
A.0B.-1C.$-\frac{5}{2}$D.$-\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知某隨機(jī)變量X的概率密度函數(shù)為$P(x)=\left\{\begin{array}{l}0,x≠0\\{e^{-x}},x>0\end{array}\right.$,則隨機(jī)變量X落在區(qū)間(1,3)內(nèi)的概率為( 。
A.$\frac{e+1}{e^2}$B.$\frac{{{e^2}-1}}{e^3}$C.e2-eD.e2+e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等比數(shù)列{an}的前n項和為Sn,且4a1,2a2,a3依次等差數(shù)列,若a1=1,則S5=( 。
A.16B.31C.32D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$a=(\frac{7}{9})^{5}$,$b=(\frac{9}{7})^{\frac{1}{5}}$,$c=lo{g}_{2}\frac{7}{9}$,則a,b,c的大小關(guān)系是( 。
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知P為雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上的動點,點M是圓(x+5)2+y2=4上的動點,點N是圓(x-5)2+y2=1上的動點,則|PM|-|PN|的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)y=ksin(kx+φ)(k>0,|φ|<$\frac{π}{2}$)與函數(shù)y=kx-k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx-φ)+cos(kx-φ)圖象的一條對稱軸的方程可以為(  )
A.x=-$\frac{π}{24}$B.x=$\frac{37π}{24}$C.x=$\frac{17π}{24}$D.x=-$\frac{13π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式(2-a)x2-2(a-2)+4>0對于一切實數(shù)都成立,則( 。
A.{a|-2<a≤2}B.{a|-2<a<2}C.{a|a<-2}D.{a|a<-2或a>2}

查看答案和解析>>

同步練習(xí)冊答案