【題目】下列命題正確的是( 。

A.x3,則x22x30”的否命題是:x3,則x22x3≠0”

B.ABC中,ABsinAsinB的充要條件

C.pq為假命題,則pq一定為假命題

D.存在x0R,使得ex0≤0”的否定是:不存在x0R,使得e0”

【答案】B

【解析】

寫出命題的否命題判斷中,由正弦定理判斷的正誤;若“”為假命題,則、至少一個是假命題,判斷;利用命題的否定形式判斷.

對于,命題“若,則”的否命題是“若,則”,故不正確.

對于,中,“ ”;由正弦定理得“ ”;“ ”所以正確;

對于,若“”為假命題,所以、至少一個是假命題,所以錯誤;

對于,“存在,使得”的否定是:不存在,使得”,不滿足命題的否定形式,所以不正確;

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次購物抽獎活動中,已知某10張獎券中有6張有獎,其余4張沒有獎,且有獎的6張獎券每張均可獲得價值10元的獎品.某顧客從此10張獎券中任意抽取3.

1)求該顧客中獎的概率;

2)若約定抽取的3張獎券都有獎時,還要另獎價值6元的獎品,求該顧客獲得的獎品總價值(元)的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,直線不經(jīng)過橢圓上頂點(diǎn),與橢圓交于,不同兩點(diǎn).

1)當(dāng)時,求橢圓的離心率的取值范圍;

2)若,直線的斜率之和為,證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,對一切,點(diǎn)都在函數(shù)的圖像上.

(1)證明:當(dāng)時,;

(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè)為數(shù)列的前n項(xiàng)的積,若不等式對一切成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知位于軸左側(cè)的圓軸相切于點(diǎn)且被軸分成的兩段圓弧長之比為,直線與圓相交于,兩點(diǎn),且以為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).

1)求圓的方程;

2)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰RtABC中,∠BAC90°,腰長為2,D、E分別是邊AB、BC的中點(diǎn),將BDE沿DE翻折,得到四棱錐BADEC,且F為棱BC中點(diǎn),BA.

1)求證:EF⊥平面BAC;

2)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角QBEA的余弦值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的離心率,左、右焦點(diǎn)分別為,,過右焦點(diǎn)任作一條不垂直于坐標(biāo)軸的直線l與橢圓C交于A,B兩點(diǎn),的周長為.

1)求橢圓C的方程;

2)記點(diǎn)B關(guān)于x軸的對稱點(diǎn)為點(diǎn),直線x軸于點(diǎn)D.的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn),過的直線交橢圓、兩點(diǎn),且是線段的中點(diǎn).

1)求橢圓的離心率;

2)已知是橢圓的左焦點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ABADADBC,APABAD=1.

(Ⅰ)若直線PBCD所成角的大小為BC的長;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

同步練習(xí)冊答案