如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點(diǎn).
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A-PD-E的余弦值.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面垂直的判定
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(Ⅰ)以點(diǎn)A為坐標(biāo)原點(diǎn),建立坐標(biāo)系,證明
DE
PB
=0,
DE
PC
=0,即可證明DE⊥平面PBC;
(Ⅱ)求出平面PAD的一個(gè)法向量、平面PCD的一個(gè)法向量,利用向量的夾角公式,即可求二面角A-PD-E的余弦值.
解答: (Ⅰ)證明:∵側(cè)面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,
∴PA⊥AB,PA⊥AD⊥AD⊥AB,
以點(diǎn)A為坐標(biāo)原點(diǎn),建立如圖所示的坐標(biāo)系,設(shè)PA=AB=BC=2AD=2,則P(0,0,2),D(1,0,0),B(0,2,0),C(2,2,0),E(1,1,1),
DE
=(0,1,1),
PB
=(0,2,-2),
PC
=(2,2,-2),
DE
PB
=0,
DE
PC
=0,
∴DE⊥PB,DE⊥PC,
∵PB∩PC=P,
∴DE⊥平面PBC;
(Ⅱ)解:由(Ⅰ)可知平面PAD的一個(gè)法向量
m
=(0,2,0).
設(shè)平面PCD的一個(gè)法向量為
n
=(x,y,z),則
PD
=(1,0,-2),
PC
=(2,2,-2),
x-2z=0
2x+2y-2z=0
,
∴取
n
=(2,-1,1),
∴cos<
m
,
n
>=
-2
6
•2
=-
6
6
點(diǎn)評(píng):本題考查了直線與平面垂直的判定,考查了利用空間向量求解二面角的大小,綜合考查了學(xué)生的空間想象能力和思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinx,x∈(α,β),且(α,β)⊆[0,π],若任意x1,x2,x3∈(α,β),f(x1),f(x2),f(x3)都能構(gòu)成某個(gè)三角形的三條邊,則β-α的最大值為( 。
A、
π
6
B、
π
3
C、
3
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(π+α)=
4
5
,則cos(3π-α)的值是( 。
A、
4
5
B、-
4
5
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
4x-9y+11≥0
4x+5y-3≥0
2x-y-5≤0
,則目標(biāo)函數(shù)z=2x-3y的最小值為(  )
A、-4B、-2C、-1D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x2-ax+1有負(fù)值,則常數(shù)a的取值范圍是( 。
A、-2<a<2
B、a≠2且a≠-2
C、1<a<3
D、a<-2或a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出定義在(0,+∞)上的三個(gè)函數(shù):f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,已知g(x)在x=1處取極值.
(Ⅰ)求實(shí)數(shù)a的值,并確定函數(shù)h(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)1<x<e2時(shí),恒有x<
2+f(x)
2-f(x)
成立;
(Ⅲ)若函數(shù)y=m-g(x)在[
1
e
,e]上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知多面體ABCDEF中,AB∥CD∥EF,平面ABCD與平面ADE垂直,△ADE是以AD為斜邊的等腰直角三角形,點(diǎn)G為邊BC的中點(diǎn),且AB=AD=2,CD=4,EF=3.
(1)求證:FG⊥平面ABCD;
(2)若∠ADC=120°,求二面角F-BD-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax(a∈R).
(1)若不等式f(ax)>a-3的解集為R,求實(shí)數(shù)a的取值范圍;
(2)設(shè)x>y>0,且xy=4,若不等式f(x)+f(y)+2ay≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對(duì)一切正實(shí)數(shù)x恒成立,求t的取值范圍;
(2)設(shè)g(x)=f(x)+
t
ex
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對(duì)任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:1n+2n+…+(n-1)n≤nn(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案