5.設(shè)a,b∈R,則“a>b”是“a>|b|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:當(dāng)a=1,b=-2時(shí),滿足a>b,但a>|b|不成立,即充分性不成立,
若a>|b|,當(dāng)b≥0,滿足a>b,當(dāng)b<0時(shí),a>|b|>b,成立,即必要性成立,
故“a>b”是“a>|b|”必要不充分條件,
故選:B

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系結(jié)合充分條件和必要條件的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下面各組函數(shù)中為相同函數(shù)的是( 。
A.$f(x)=\sqrt{{{({x-1})}^2}}\;,\;\;g(x)=x-1$B.$f(x)=\sqrt{{x^2}-1}\;,\;\;g(x)=\sqrt{x+1}•\sqrt{x-1}$
C.$f(x)=\sqrt{\frac{1-x}{x+2}}\;,\;\;g(x)=\frac{{\sqrt{1-x}}}{{\sqrt{x+2}}}$D.$f(x)={({\sqrt{x-1}})^2}\;,\;\;g(x)=\sqrt{{{({x-1})}^2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中正確的是(  )
A.平行的兩條直線的斜率一定相等B.平行的兩條直線的傾斜角一定相等
C.垂直的兩直線的斜率之積為-1D.斜率相等的兩條直線一定平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+4\;,\;\;0≤x≤2\\ 2x\;,\;\;x>2\end{array}\right.$,若f(x0)=8,則x0=2或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)滿足:對(duì)于其定義域D內(nèi)的任何一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)f(x)在D上封閉.
(1)若下列函數(shù)的定義域?yàn)镈=(0,1),試判斷其中哪些在D上封閉,并說明理由.f1(x)=2x-1,f2(x)=2x-1.
(2)若函數(shù)g(x)=$\frac{5x-a}{x+2}$的定義域?yàn)椋?,2),是否存在實(shí)數(shù)a,使得g(x)在其定義域(1,2)上封閉?若存在,求出所有a的值,并給出證明:若不存在,請(qǐng)說明理由.
(3)已知函數(shù)f(x)在其定義域D上封閉,且單調(diào)遞增.若x0∈D且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)$f(x)=\sqrt{x}$,$g(x)=x-\sqrt{x}$,則f(x)+g(x)=x,x≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)是定義在[0,+∞)上單調(diào)遞增的函數(shù),則滿足$f({2x-1})<f({\frac{1}{3}})$的x取值范圍是( 。
A.$({\frac{1}{2}\;,\;\;\frac{2}{3}})$B.$({-∞\;,\;\;\frac{2}{3}})$C.$[{\frac{1}{2}\;,\;\;\frac{2}{3}})$D.$({-∞\;,\;\;\frac{2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.△ABC中,a、b、c分別為角A、B、C的對(duì)邊,$a=6,b=5\sqrt{2}$,$cosA=\frac{4}{5}$,則∠B=45o或135o

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)[t]表示不超過實(shí)數(shù)t的最大整數(shù),例如[3,2]=3,[-2,3]=-3,則在坐標(biāo)平面xOy上,滿足$\frac{[x]^{2}}{4}$+$\frac{[y]^{2}}{9}$=1的點(diǎn)P(x,y)所形成的圖形的面積為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案