Loading [MathJax]/jax/output/CommonHTML/jax.js
6.已知函數(shù)f(x)=klnx-x2,k∈R.
(Ⅰ)若f(x)在(0,1]上是增函數(shù),求k的取值范圍;
(Ⅱ)討論函數(shù)f(x)的零點個數(shù).

分析 (Ⅰ)求出函數(shù)的導數(shù),根據(jù)函數(shù)的單調(diào)性求出k的范圍即可;
(Ⅱ)法一:通過討論k的范圍,集合函數(shù)的單調(diào)性求出函數(shù)的零點個數(shù)即可;法二:根據(jù)函數(shù)的單調(diào)性畫出圖象,判斷函數(shù)的零點個數(shù)即可.

解答 解:(Ⅰ)由題意得f′(x)≥0在(0,1]上恒成立…(1分)
∵f′(x)=kx-2x且x∈(0,1],
∴f′(x)≥0?k≥2x2 …(2分)
∵y=2x2在(0,1]上遞增,
∴(2x2max=2,…(3分)
∴k的取值范圍是[2,+∞)…(4分)
(Ⅱ)解法1:(1)當k=0時,f(x)=-x2(x>0)沒有零點;…(5分)
(2)當k≠0時,f′(x)=k2x2x(x>0)…(6分)
∴k<0時,f′(x)<0,f(x)在(0,+∞)上單調(diào)遞減,
且x→0且x>0時,f(x)→+∞;x→+∞時,f(x)→-∞,因此f(x)有一個零點;…(7分)
又k>0時有

x(0,k2k2k2,+∞)
f′(x)+0-
f(x)遞增極大值12e遞減
x→+∞時,f(x)→-∞;x→0且x>0時,f(x)→-∞;
f(x)max=f(k2)=k2(lnk2-1)…(9分)
∴l(xiāng)nk2=1即k=2e時,f(x)有1個零點;
lnk2<1即0<k<2e時,f(x)無零點;
lnk2>1即k>2e時,f(x)有2個零點,…(11分)
綜上所述,
當k∈[0,2e)時,函數(shù)f(x)沒有零點;
當k=2e或k∈(-∞,0)時,函數(shù)f(x)有一個零點;
當k∈(2e,+∞)時,函數(shù)f(x)有兩個零點…(12分)
解法2:當k=0時,f(x)=-x2(x>0)沒有零點;…(5分)
當k≠0時方程f(x)=0⇒1k=lnxx2(x>0)…(6分)
設φ(x)=lnxx2(x>0),則φ′(x)=12lnxx3…(7分)
則有
x(0,eee,+∞)
φ′(x)+0-
φ(x)遞增極大值12e遞減
而x→0且x>0時,φ(x)→-∞;x→+∞且x>0時,φ(x)→0且φ(x)>0…(8分)
…(9分)
由圖可知:
1k12e,即k∈(0,2e)時,y=1k與y=f(x)圖象沒有公共點;
1k=12e1k<0,即k=2e或k∈(-∞,0)時,y=1k與y=k(x)圖象有一個公共點;
當0<1k12e,即k∈(2e,+∞)時,y=1k與y=k(x)圖象有兩個公共點…(11分)
綜上所述,
當k∈[0,2e)時,函數(shù)f(x)沒有零點;
當k=2e或k∈(-∞,0)時,函數(shù)f(x)有一個零點;
當k∈(2e,+∞)時,函數(shù)f(x)有兩個零點.…(12分)

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想、轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)是定義在{x|x≠0}上的偶函數(shù),且當x>0時,f(x)=log2x.
(1)求出函數(shù)f(x)的解析式;
(2)畫出函數(shù)|f(x)|的圖象,并根據(jù)圖象寫出函數(shù)|f(x)|的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.集合A={x|x2+x-6=0},B={x|(a2-1)x+a+1=0},A⊆B,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知a>0且a≠1,解關于x的不等式2loga(x-1)>loga[1+a(x-2)].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知a>0,函數(shù)f(x)=x|x-a|.
(1)當a=2時,寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)y=f(x)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.命題:?x∈R,x2≠x的否定是:?x∈R,x2=x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設函數(shù)f(x)=x3-ax-b,x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)=f(x0),其中x1≠x0;求證:x1+2x0=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(理科)(1)證明:(a+b)3=a3+3a2b+3ab2+b3
(2)已知f(x)=x313x+3x2,記f1(x)=f(x),對任意n∈N*,滿足fn(x)=f[fn-1(x)],
①求f213)的值;    
②求f10(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知復數(shù)1i¯z=4+2i(i為虛數(shù)單位),則復數(shù)z在復平面上的對應點所在的象限是( �。�
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案