在△ABC中,|
BA
|=2,|
AC
|=1,
BA
AC
=-1,則△ABC的外接圓半徑是(  )
A、1
B、2
C、
7
2
D、
7
考點:正弦定理
專題:解三角形
分析:利用平面向量的數(shù)量積運算列出關(guān)系式,將已知等式代入計算求出cosA的值,確定出A的度數(shù),再利用正弦定理即可求出外接圓半徑.
解答: 解:∵在△ABC中,|
BA
|=2,|
AC
|=1,
BA
AC
=-1,
∴2×1×cos(π-A)=-1,即cosA=
1
2
,
∴A=60°,
由余弦定理得:|
BC
|2=4+1-2=3,即|
BC
|=
3
,
則由正弦定理得:2R=
3
sin60°
=2,即R=1,
故選:A.
點評:此題考查了正弦定理,平面向量的數(shù)量積運算,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校有5名同學(xué)參加A、B、C三所學(xué)校的自主招生考試,每人限報一所高校,若這三所學(xué)校中每個學(xué)校都至少有1名同學(xué)報考,那么這5名同學(xué)不同的報考方法種數(shù)共有
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a∈R,則復(fù)數(shù)z=
a+i
1+i
對應(yīng)的點不可能在復(fù)平面的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p、q是簡單命題,則“p∧q為真”是“p∨q為真”的( 。
A、充分但不必要條件
B、必要但不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),則S100=( 。
A、2100B、2600
C、2800D、3100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序運行后輸出的結(jié)果為( 。
A、10B、9C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2(x≤0)的反函數(shù)是(  )
A、y=
x
(x≥0)
B、y=
x
(x≤0)
C、y=-
x
(x≥0)
D、y=-
x
(x≤0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)的部分圖象如圖所示,則( 。
A、ω=2,φ=-
π
6
B、ω=2,φ=
π
6
C、ω=1,φ=-
π
6
D、ω=1,φ=
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,當(dāng)動點M在側(cè)面BCC1B1內(nèi)運動時,總有∠MD1D=∠BD1D,則動點M在平面BCC1B1內(nèi)的轉(zhuǎn)跡是( 。
A、圓的一部分
B、橢圓的一部分
C、雙曲線的一部分
D、拋物線的一部分

查看答案和解析>>

同步練習(xí)冊答案