分析 (1)連接AC,推導(dǎo)出EF∥PC,由此能證明EF∥平面PBC.
(2)取AD中點(diǎn)O,連接OB,OP,推導(dǎo)出BO⊥AD,PO⊥BO,從而PO⊥平面ABCD.由此${V_{A-DEF}}={V_{E-ADF}}=\frac{1}{3}{S_{△ADF}}•EG$.從而能求出三棱錐A-DEF的體積.
解答 證明:(1)連接AC,因?yàn)樗倪呅蜛BCD是菱形,F(xiàn)為BD中點(diǎn),
所以F為AC中點(diǎn).
又因?yàn)镋為PA中點(diǎn),所以EF∥PC,又EF?平面PBC,PC?平面PBC,
所以EF∥平面PBC. …(6分)
解:(2)取AD中點(diǎn)O,連接OB,OP,因?yàn)镻A=PD,
所以PO⊥AD,因?yàn)榱庑蜛BCD中,AB=AD,∠BAD=60°,
所以△ABD是等邊三角形,所以BO⊥AD,
由已知$BO=\sqrt{3},PO=\sqrt{3}$,若$PB=\sqrt{6}$,
由BO2+PO2=PB2得PO⊥BO,
所以平面PAD⊥平面ABCD,所以PO⊥平面ABCD.
過(guò)E作EG⊥AD于G,則EG⊥平面ABCD.
因?yàn)镋為PA中點(diǎn),所以$EG=\frac{1}{2}OP=\frac{{\sqrt{3}}}{2}$,
所以${V_{A-DEF}}={V_{E-ADF}}=\frac{1}{3}{S_{△ADF}}•EG=\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\frac{{\sqrt{3}}}{2}=\frac{1}{4}$. …(12分)
點(diǎn)評(píng) 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ϕ | B. | {-2} | C. | {1} | D. | {-2,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 既不充分也不必要條件 | D. | 充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{1}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com