設(shè)a,b,c是不全相等的正數(shù),求證(a+b)(b+c)(c+a)>8abc.
考點(diǎn):不等式的證明
專題:證明題,綜合法
分析:利用基本不等式,得出三個(gè)不等式,再相乘,利用a,b,c不全相等,即可證得結(jié)論.
解答: 證明:因?yàn)閍,b,c均為正數(shù),由均值不等式得a+b≥2
ab
、a+c≥2
ac
b+c≥2
bc
,
又a,b,c不全相等,所以(a+b)(b+c)(c+a)>8abc.
點(diǎn)評(píng):本題考查不等式的證明,考查基本不等式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

試證明函數(shù)f(x)=-
1
x+1
在(-∞,-1)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=3n+k.
(1)求k的值及數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-2n,數(shù)列{bn}的前n項(xiàng)和Tn=3-bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1
12
an•bn,求數(shù)列{cn}的前n項(xiàng)和Rn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩塊直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.
(1)若記
AB
=
a
,
AC
=
b
,試用
a
,
b
表示向量
AD
,
CD
;
(2)若AB=
2
,求
AE
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-x-6<0},B={x|m-2<x<m}.
(Ⅰ)若m=4,全集U=A∪B,求A∩(∁UB);
(Ⅱ)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正六棱錐的底面周長為24,側(cè)面與底面所成角為60°.求:
(1)棱錐的高;
(2)側(cè)棱長;
(3)側(cè)棱與底面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x.
(Ⅰ)求函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[-
3
2
,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,對(duì)于任意相鄰三點(diǎn)都不共線的有序整點(diǎn)列(整點(diǎn)即橫縱坐標(biāo)都是整數(shù)的點(diǎn))A(n):A1,A2,A3,…,An與B(n):B1,B2,B3,…,B(n),其中n≥3,若同時(shí)滿足:①兩點(diǎn)列的起點(diǎn)和終點(diǎn)分別相同;②線段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,則稱A(n)與B(n)互為正交點(diǎn)列.則A(3):A1(0,2),A2(3,0)),A3(5,2)的正交點(diǎn)列B(3)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案